Вирусы бактерий морфология фазы взаимодействия фага с бактериальной клеткой

Бактериофаги ("пожиратели бактерий") – это вирусы бактерий. Размеры такие же, как у вирусов, – 20 – 200 нм. Как и вирусы, бактериофаги проходят через бактериальные фильтры и размножаются только в живых клетках. Бактериофаги в природе находятся там, где бактерии: в воде, почве, молоке, в организме людей и животных.

С помощью электронного микроскопа показано, что большинство бактериофагов имеют форму головастика или сперматозоида. Они состоят из головки и хвостового отростка. Отросток – стержень с чехлом. Стержень заканчивается шестиугольной пластинкой с короткими шипами, от которых отходят фибриллы. Чехол может сокращаться. Внутри головки находится ДНК. ДНК окружена капсидом. В отростке находятся ферменты – лизоцим и АТФаза. Они участвуют в проникновении фага в клетку.

Взаимодействие бактериофага с бактериальной клеткой называется бактериофагией. Стадии взаимодействия фага с клеткой такие же, как и у вирусов: адсорбция, проникновение в клетку, синтез нуклеиновых кислот и белков, морфогенез, выход из клетки. Но имеются особенности. Фаги обладают строгой специфичностью взаимодействия. Определенный фаг взаимодействует с определенным видом или даже подвидом бактерий. По этому название бактериофагов такие же, как видовые или родовые названия тех бактерий, с которыми они взаимодействуют. Например, стафилофаги, дизентерийные фаги и т.д.

Интересен процесс проникновения фагов с хвостовыми отростками в клетку. Эти фаги адсорбируются при помощи фибрилл, сокращается чехол (при помощи АТФазы), и стержень внедряется в клетку (при помощи фермента лизоцима). ДНК проходит через стержень в цитоплазму клетки. Капсид и отросток остаются вне клетки. Через 5 минут начинается синтез нуклеиновых кислот и белков, а через 30-40 минут бактериальная клетка разрушается (лизируется). В окружающую среду выходит около 200 новых фаговых частиц.

Явление бактериофагии можно обнаружить при выращивании бактерий на жидких и плотных питательных средах. На жидких средах при действии фагов наблюдается просветление жидкости с бактериальной культурой. . На твердых средах на фоне сплошного роста бактерий образуются стерильные пятна круглой или неправильной формы. Они образуются на месте разрушения (лизиса) бактерий. Это "негативные колонии" бактериофага.

Различают: а) поливалентные фаги – взаимодействуют с родственными видами бактерий; б) моновалентные – взаимодействуют с одним определенным видом; в) типовые фаги – взаимодействуют с отдельными вариантами (типами) данного вида бактерий.

Фаги делятся на вирулентные и умеренные. Вирулентные фаги проникают в клетку, размножаются в ней и вызывают ее лизис. Умеренные фаги проникают в клетку и встраиваются в хромосому бактерии. Лизис при этом не происходит. Встроенный в хромосому бактерии фаг называется профагом. Бактериальные клетки, содержащие профаг, называются лизогенными, а само явление – лизогения. Лизогенные бактерии имеют дополнительные свойства (образование токсинов и др). Изменение свойств называется фаговой конверсией. Под влиянием УФ лучей и химических веществ профаг может превращаться в вирулентный фаг. Это явление называется индукцией фага.

Умеренные фаги – мощный фактор изменчивости микроорганизмов и могут нанести вред микробиологическому производству

Получение и применение бактериофагов.Для получения препаратов бактериофагов используют проверенные производственные штаммы фагов и соответствующие им типичные культуры бактерий. В бактериальную культуру в жидкой питательной среде вносят маточную взвесь фага. После просветления (лизиса) культуру фильтруют через бактериальные фильтры, и фильтрат вносят в свежую культуру соответствующих бактерий и т.д. После накопления достаточного количества фага лизированную им культуру бактерий вновь фильтруют, и получают препарат фага.

Таким образом, препараты фагов получают путем многократного пассирования через чувствительную бактериальную культуру, а сами препараты фагов – фильтраты бульонных культурлизированных ими бактерий. Это прозрачные жидкости светло-желтого цвета, а также на их основе готовят другие лекарственные формы - таблетки с кислотоустойчивым покрытием, мази, аэрозоли, свечи.

Применение фагов основано на их строгой специфичности. Они используются для:

а) диагностики инфекционных заболеваний (диагностические препараты): с помощью известного фага можно определить вид или подвид бактериальной культуры;

б) лечения и профилактики заболеваний (лечебно-профилактические препараты).

ВНИМАНИЕ! САЙТ ЛЕКЦИИ.ОРГ проводит недельный опрос. ПРИМИТЕ УЧАСТИЕ. ВСЕГО 1 МИНУТА.

Понятие о бактериофагах.

Понятие бактериофаг ввел Ф.Д'Эрелль, который наблюдал просветление мутной бульонной среды с дезентирийным возбудителем и образование лизисных стерильных пятен на плотной вреде при добавлении литического агента из фильтрата испражнений.

Морфология

· Размеры – 20-200 нм.

· Имеют форму головастиков

· Наиболее сложные фаги состоят из многогранной головки (содержит НК), шейки и отростка.

· На конце отростка есть базальная пластинка с отходящими от нее нитями и зубцами – орган прикрепления к оболочке бактерии.

· У многих фагов отросток окружен чехлом, который может сокращаться, что обеспечивает введение НК в бактериальную клетку.

Различают 5 морфологических групп фагов:

1. Бактериофаги с длинным отростком и сокращающимся чехлом

2. Фаги с длинным отростком, но не сокращающимся чехлом

3. Фаги с коротким отростком

4. Фаги с аналогом отростка

5. Нитевидные фаги

Химический состав:

· Состоят из НК и белков.

· Большинство содержит 2-х нитчатую ДНК в виде кольца.

· Некоторые фаги содержат одну нить ДНК или РНК.

· Капсид – оболочка фагов, состоит из упорядоченных белковых субъединиц – капсомеров.

· Сложные фаги в дистальной части отростка, содержится фермент – лизоцим – растворяет оболочку бактерий на ограниченном участке, что способствует проникновению фаговой НК в цитоплазму бактерии.

Резистентность:

· Хорошо переносят: замораживание, нагревание до 70 0 С и высушивание.

· Чувствительны к кислотам, УФ и кипячению.

Вирулентные и умеренные фаги.

· Вирулентные фаги – взаимодействуют с бактериями по продуктивному типу.

- В начале происходит абсорбция фага на поверхности оболочки бактерий, за счет взаимодействия с рецепторами.

- Затем следует проникновение (пенетрация) вирусной НК в цитоплазму бактерии: лизоцим растворяет участок оболочки бактерии, чехол фага сокращается и НК впрыскивается, а оболочка фага остается за пределами бактерии.

- Далее осуществляется синтез компонентов фага и НК для сборки нового поколения (морфогенез), одновременно осуществляется репрессия бактериальной НК. В одной бактерии может образоваться от нескольких десятков, до нескольких сотен фагов.

- Морфогенез фагов заканчивается лизисом бактерии и выходом фагов во внешнюю среду.

· Умеренные фаги – взаимодействуют по продуктивному или интегративному типу.

Продуктивный цикл идет аналогично.

При интегративном взаимодействии: ДНК умеренного фага после попадания в цитоплазму бактерии встраивается в хромосому в определенном участке, при делении клетки реплицируется и переходит в дочерние летки. Такая встроенная ДНК фага называется – профаг, бактерия, содержащая профаг называется лизогенной, а явление – лизогения.

Под действием ряда внешних факторов или спонтанно профаг может вырезаться из хромосомы и переходить в свободное состояние, проявляя вирулентность и образование новых фагов.

Лизогенезация бактерий лежит в основе фаговой (лизогенной) конверсии – это изменение признаков или свойств у лизогенных бактерий, по сравнению с нелизогенными бактериями того же вида. Изменяться могут морфологические, антигенные и другие свойства.

Умеренные фаги могут быть дефектными – не способными образовывать потомство.

Основные стадии взаимодействия фага с бактерией.

· В начале происходит абсорбция фага на поверхности оболочки бактерий, за счет взаимодействия с рецепторами.

· Затем следует проникновение (пенетрация) вирусной НК в цитоплазму бактерии: лизоцим растворяет участок оболочки бактерии, чехол фага сокращается и НК впрыскивается, а оболочка фага остается за пределами бактерии.

· Далее осуществляется синтез компонентов фага и НК для сборки нового поколения (морфогенез), одновременно осуществляется репрессия бактериальной НК. В одной бактерии может образоваться от нескольких десятков, до нескольких сотен фагов.

· Морфогенез фагов заканчивается лизисом бактерии и выходом фагов во внешнюю среду.

Бактериофаги - вирусы бактерий. Бактериофагия - процесс взаимодействия фагов с бактериями, нередко заканчивающийся разрушением, лизисом бактерий.

Бактериофаги были открыты в 1916 г. канадским ученым Ф.Д.Эррелем. Исследователь выделил из испражнений больных дизентерией фильтрующийся агент, способный разрушать, лизировать дизентерийные бактерии. Последую­щие наблюдения показали, что бактериофаги встречаются повсеместно, где есть бактерии: в почве, сточных водах, кишечном тракте человека и животных, гнойном отделяемом и других субстратах.

Структура сложноустроенного бактериофага

- головка, в которой содержится нуклеиновая кислота;

- отросток, представляющий собой полый стержень, сверху покрытый со­кратительным чехлом. На конце отростка находятся 6-ти зубая пластинка для адсорбции фага на бактериальной клетке и нити прикрепления.

Оболочечные структуры фага имеют белковую природу.

У слоожноустроенного бактериофага бинарный (двойной) тип симметрии, т.к. головка имеет кубический тип симметрии, а отросток - спиральный.

Кроме сложноустроенного, существуют и другие морфологические формы бактериофагов, содержащие либо ДНК, либо РНК и объединенные А.С.Тихоненко в 5 основных групп

1. Фаги I типа - нитевидной формы. Имеют спиральный тип симметрии, ДНК-содержащие.

2. Фаги II типа - имеют головку и рудимент отростка. Кубический тип симметрии. Большинство из них - РНК-содержащие.

3. Фаги Ш типа - имеют головку с коротким отростком. Бинарный тип

4. Фаги IV типа - имеют головку и длинный несокращающийся отросток. Бинарный тип симметрии, ДНК-содержащие.

5. Фаги V типа - имеют головку и длинный сокращающийся отросток. Би­нарный тип симметрии. ДНК-содержащие.

Вирулентные и умеренные бактериофаги. Фазы взаимодействия вирулентного бактериофага с клеткой. Практическое применение бактериофагии.

В зависимости от характера взаимодействия с бактериальной клеткой, различают вирулентные и умеренные бактериофаги.

Вирулентные фаги способны вызывать острую продуктивную инфекцию на уровне клетки. Умеренные фаги чаще вызывают ннтегратианую вирусную инфекцию на уровне клетки, реже - продуктивную.

Фазы взаимодействия сложноустроенного вирулентного бактериофага с клеткой:

L Адсорбция (отростковой частью фага) на клеточной стенке бактерий. В эту фазу рецепторы 6-ти зубой пластины и нитей прикрепления специфически взаимодействуют с определенными рецепторами клеточной стенки бактерий. Некоторые фаги в качестве рецепторов используют F-пили. На бактериях, лишенных клеточной стенки (L-формы, мико плазмы), бактериофаги не адсорби­руются.

2. Проникновение нуклеиновой кислоты фага в клетку путем впрыскивания, при этом оболочка фага остается на поверхности бактериальной клетки.

3. Эклипсная фаза. Синтез фаговых частиц, подобно синтезу вирусов в эукариотической клетке. Происходит репликация нуклеиновой кислоты бактериофага с образованием множественных копий, а на рибосомах бактериальной клетки - синтез фаговых белков. В результате образуется вегетативный фаг, т.е.

неоформленный фаговый материал (белковые оболочки и нуклеиновые кисло­ты).
4. Композиция фаговых частиц. Происходит сборка белковых оболочек и нуклеиновых кислот и формируются зрелые бактериофаги.

5. Выход фага из бактериальной клетки путем лизиса клетки изнутри. Он осуществляется за счет свободного лизоцима, выделяемого бактериофагом, что приводит к гибели бактерий.

Таким образом, сложноустроенный бактериофаг отличается от других вирусов по следующим признакам:

а) наличие бинарного типа симметрии;

б) наличие подвижного сократительного чехла на отростке;

в) внедрение нуклеиновой кислоты бактериофага в клетку путем впрыски­вания (инъекцонный механизм).

Репродукция вирулентного фага в популяции бактерий, выращенных на

жидкой питательной среде (МПБ), сопровождается их лизисом и просветлением среды В популяции чувствительных бактерий, выращенных сплошным газоном на плотной питательной среде (МПА), фаги образуют зоны очагового лизиса (рис.5), которые называются негативными колониями или стериль­ными бляшками.

31.Практическое использование бактериофагов в микробиологии и медицине.Практическое применение бактериофагов.

1. Для диагностики инфекционных заболеваний. Используют метод фаго-тшшрования, когда с помощью известного набора фагов определяют фаговар исследуемых бактерий. Метод основан на специфичности фагов, т.е. способности взаимодействовать только с бактериями, имеющими специфические к фагу рецепторы, и вызывать их лизис. Используется для диагностики брюшного тифа, дизентерии, чумы, холеры, стафилококковых инфекций.

Метод фаготипирования имеет важное эпидемиологическое значение, т.к. позволяет установить связи между источником инфекции и отдельными случаями заболеваний.

а) стафилококковый бактериофаг — при гнойно-воспалительных заболеваниях, вызванных S. aureus;

б) бактериофаг P. aeruginosa - при гнойно-воспалительных заболеваниях, вызванных синегнойной палочкой.

Существуют комбинированные многокомпонентные препараты бактериофагов:

- коли-протейный бактериофаг - при колиинфекциях, вызванных диарее-генными эшерихиями и протейных дисбактериозах;

- пиобактериофаг - для лечения стафилококковой, стрептококковой, клеб-сиеллезной, протейной инфекций, а также заболеваний, вызванных диареегенными эшерихиями и синегнойной палочкой;

- интести-бактериофаг - для лечения бактериальной дизентерии, сальмонелл езов, колиинфекций, а также протейной, стафилококковой, энтерококковой и синегнойной инфекций.

Бактериофаги применяют местно путем аппликации на раневую или ожоговую поверхность, введением в полости (брюшную, плевральную, мочевой пузырь), через рот, а также ректально. Соответственно способу применения препараты бактериофагов выпускают в различных лекарственных формах: жидком виде, таблетках, мазях, свечах, аэрозолях. Перед назначением бакте­риофага необходимо поставить пробу на чувствительность к нему выделенной культуры микроорганизмов.

2. Для профилактики в очагах инфекции: брюшнотифозный бактериофаг, поливалентный дизентерийный бактериофаг.

Дата публикования: 2015-03-29 ; Прочитано: 11014 | Нарушение авторского права страницы

studopedia.org - Студопедия.Орг - 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

К клеточной стенке бактерий фаги прикрепляются концевы­ми нитями отростков. Затем оболочка бактерии растворяется с помощью фермента лизоцима, белковый чехол хвостового от­ростка сокращается и через канал хвостового отростка нуклеино­вая кислота вводится (впрыскивается) в цитоплазму клетки. После проникновения нуклеиновой кислоты внутрь клетки бак­терии следует Си-фаза, или фаза смены информации. В этот период фаговые частицы не обнаруживаются, однако в клетке развиваются процессы, обусловленные фаговым геномом. Начи­нается синтез иРНК и ранних белков, необходимых для синтеза ДНК фага и других структурных компонентов зрелого фага. Син­тез ДНК фага осуществляется с помощью клеточной ДНК-поли-меразы и сопровождается полным распадом ДНК бактерии и ее утилизацией. Если ДНК бактерии не хватает, фаговая ДНК син­тезируется из компонентов среды. ДНК фага можно обнаружить в клетке через 8—9 мин после заражения. С 9-й минуты начина­ют синтезироваться специфичные фаговые белки. На последнем этапе взаимодействия фага с бактерией происходит самосборка фаговых частиц, которая состоит в необратимом объединении фаговой ДНК и сформировавшейся белковой оболочки. После этого происходит лизис бактерии и зрелые фаги выходят в окру­жающую среду. Полный цикл развития фага составляет 30— 90 мин. За этот период образуется 200 и более фаговых частиц, которые способны заражать новые клетки.

По характеру взаимодействия с клеткой бактерии бактериофа­ги делятся на вирулентные и умеренные. Вирулентные фаги всег­да лизируют клетку бактерии. Умеренные фаги могут вызвать лизис клетки бактерии, но могут перейти и в неинфекционную форму. В этом случае молекула ДНК фага прикрепляется к ДНК бактерии и передается с нею дочерним клеткам. Фаг, существую­щий в такой форме, называется профагом. Сравнительно недавно стало известно, что включение вирусной ДНК в бактериальную происходит путем кроссинговера между хромосомами бактерии и вируса. Хромосома вируса принимает кольцевую форму и при­крепляется к определенному локусу хромосомы бактерии. Затем хромосомы бактерии и вируса разрываются, концы их соединя­ются крест-накрест и профаг оказывается включенным в хромо­сому клетки хозяина. В этом случае профаг является как бы частью ДНК бактерии и вместе с ней реплицируется. Клетки бактерий, имеющие в своей хромосоме профаг, называются лизо-генными, а явление совместного существования ДНК бактерии и профага называется лизогенией.

Профаг может сосуществовать с бактериальной клеткой дли­тельное время, но при определенных условиях может отделиться от ДНК бактерии, перейти в вирулентную форму и вызвать лизис бактериальной клетки с помощью фермента лизоцима. Освобождение хромосомы вируса происходит один раз прибли­зительно на 10 000 делений лизогенной бактерии. РНК-вирусы, так же как и ДНК-вирусы, могут вызывать лизогенное состояние клеток бактерий. Установлено, что на РНК вируса может синте­зироваться комплементарная ей ДНК. На ней синтезируется вто­рая цепь ДНК. Таким образом, образуется полноценная молеку­ла ДНК, способная соединиться с ДНК клетки хозяина. В каче­стве провируса эта ДНК может передаваться потомству, и вызываемая данным вирусом болезнь может стать как бы наслед­ственной. Наличие профага в составе бактериальной хромосомы не мешает репликации ДНК бактерии. Однако гены профага, встроенные в ДНК клетки, не транскрибируются. Это связано с образованием в клетке бактерии репрессора — низкомолекулярно­го белка, блокирующего считывание наследственной информа­ции, записанной в фаговой ДНК. Умеренные фаги могут быть дефектными, т. е. не способными к образованию зрелых фаго­вых частиц. Такие фаги осуществляют трансдукцию и использу­ются в генной инженерии.

Анеуплоидия.

Числовые аномалии кариотипа (анеуплоидия). Числовые аномалии хромосом относят к вновь возникающим мутациям. Однако имеются исследования, которые показывают, что может быть семейная предрасположенность к анеуплоидии. Так, Герцог, Хен и Олишлегер при описании шести случаев трисомии по 17-й хромосоме (новой форме трисомии у крупного рогатого скота), сочетающейся с синдромом общего недоразви­тия телят (нанизм), гидроцефалией, микрофтальмией, аномалия­ми сердца и крипторхизмом, указывают на генетическую пред­расположенность к нерасхождению хромосом.

С. Г. Куликова (1991) обнаружила трисомию по 19-й паре хромосом, которая ассоциировалась с прогнатией нижней челюс­ти у теленка (рис. 58).

Гаметы с трисомией, моносомией, нуллисомией и полисо-мией обычно вызывают летальный исход уже на ранних стадиях эмбрионального развития и являются продуктом нарушения спермио- или овогенеза у носителей транслокаций. После рож­дения наблюдают числовые нарушения только по мелким ауто-сомам и половым хромосомам.

Транслокации.

Структурные мутации хромосом. Транслокации. Наибольшее количество исследований у крупного рогатого скота проведено по изучению частоты и влияния на плодовитость цент­рического слияния — транслокации мЬжду 1-й и 29-й аутосомами (рис. 59). Эта аберрация обнаружена в молочных, мясных и ком­бинированных породах во многих странах мира, в том числе у голштино-фризской (США, Англия), немецкой черно-пестрой (Германия), айрширской (Швеция), симментальской (Швейца­рия, Германия, Австрия, Венгрия, Россия, Югославия, Новая Зе­ландия и др.), монбельярдской (Франция), швицкой (США и дру­гие страны), шароле (Франция), лимузин (Франция, Англия). Еще в 1977 г. насчитывали 28 пород, в которых была обнаружена транслокация 1/29 хромосом, а к 1991 г. уже было 50 пород.

Частота транслокаций при обследовании пород была неодина­ковой и. составила у швицкой, айрширской пород — 12,8 %, у симментальской в Англии — 4,8, в бывшем СССР — 5 % у быков на племпредприятиях, 10 — у коров и 18 — у ремонтных быков (А. И. Жигачев и др.), у шароле в Англии — 12,8, у лимузинов во Франции — от 4 до 14 %.

Транслокация 1/29 хромосом снижает плодовитость крупного рогатого скота, по отдельным расчетам, на 3,5—10 % и выше. Причины снижения плодовитости связаны с тем, что у гетерози­готных носителей робертсоновской транслокации образуются га­меты с несбалансированным набором хромосом. Так, при носи-тельстве транслокации 1/29 хромосом возможно образование шести типов гамет. Из них 1-й и 2-й типы — это гаметы с избытком, а 4-й и 5-й — с недостатком генетического материала. Использование производителя с кариотипом 2n=59, XY Т 1/29 на коровах с нормальным набором хромосом 2п=60, XX может привести к формированию нежизнеспособных эмбрионов с три-сомией и моносомией по 1-й и 29-й аутосомам. Такие же резуль­таты возможны и при других вариантах скрещиваний.

Коровы — носители транслокации 1/29 хромосом, по данным Густавссона, имеют более низкую молочную продуктивность, поэтому их раньше выбраковывают.

Во многих странах в законодательном порядке запрещено ис­пользовать быков — носителей транслокации 1/29 хромосом на станциях искусственного осеменения. Приняты ограничения или требования о цитогенетической аттестации при импорте и экс­порте животных или их гамет.

Кроме транслокации у крупного рогатого скота описаны центрические слияния между другими парами аутосом (табл. 48). Сведений о влиянии этих типов слияний на фенотип накоп­лено недостаточно, за исключением транслокации 25/27, которая снизила плодовитость животных. Рассмотрим на двух конкрет­ных примерах воздействие транслокаций 1/29 и 25/27 хромосом на воспроизводительную функцию коров. Так, итальянские уче­ные сравнивали показатели воспроизводительной функции и продуктивность коров — полусестер по отцу — носительниц транслокаций и нормальных особей серой альпийской породы по средним показателям. Швейцарские ученые такой же анализ провели на симментальской породе, при этом получили следую­щие результаты (табл. 49). Для зачатия у коров — носительниц транслокации 25/27 хромо­сом требовалось большее количество осеменений, чем у их нормаль­ных полусестер. Число дней от отела до последующего плодотворно­го осеменения (сервис-период) у коров — носительниц транслока­ций было выше, чем у их нормальных полусестер (табл. 50). Венгерский ученый Ковач (1982) указывает на то, что различия по степени влияния разных типов центрических слияний на воспроизводительную функцию могут обуслов­ливаться неодинаковым уровнем смерти несбалансированных гаплоидных клеток или эмбрионов. Эти различия также могут быть связаны с утратой центромерных участков хро­мосом, вступающих в транслокацию, или потерей их функ­циональной активности.

Кроме транслокаций по типу центрических слияний у круп­ного рогатого скота обнаружены также реципрокные транслока­ции и тандемного типа. Так, Хансен (1970) зарегистрировал тан-демную транслокацию 1-й и 9-й хромосом у датского молочного скота. Эта аберрация была связана с повышенной эмбриональ­ной смертностью и снижением плодовитости животных пример­но на 10 %.

Герцог (1972) наблюдал тандемную транслокацию 1-й и 7-й хромосом у животных немецкой красной породы с гипоплазией левой части большого полушария мозга, расщеплением позво­ночника и сегментной аплазией спинного мозга.

Гетероплоидия

Изменение числа хромосом , не кратное гаплоидному набору. В результате возникают особи с аномалным числом хромосом: моносомики (2н – 1), у которых не хватает одной хромосомы в какой либо паре, и полисомики, у которых одна из хромосом может быть повторена несколько раз (например, трисомики – 2н + 1 тетра – 2н + 2) У человека одна добавочная хромосома может вызвать болезнь Дауна. Недостаток ождной Х хромосомы у женщин приводит к потере признаков пола (моносомия)


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Бактериофаги- особые представители царства вирусов, паразитирующие в бактериальных клетках и одноклеточных организмах. *кроме хламидий, которые способны к лизогении клеток.

*Гамалея Н.Ф. изучал сибироязвенную вакцину; в одном из опытов получился лизис бактерий, соответственно сделал предположение о наличии вирусов бактерий.

*Феликс де Эррель – первооткрыватель фагов, начал использовать для диагностики, лечения и профилактики. Первый институт в Тбилиси.

*В. Хапкин – практическое использование БФ.

Особенность - приспособились использовать для своего размножения клетки бактерий.


По морфологическим свойствам:

2. Сферические (экосаэдрические)

4. Имеют головку и аналог отростка

5. Частички, или корпускулы, состоящие из головки и хвоста (отростка), по форме напоминающие сперматозоид. Имеется чехол

Как и вирусы, фаги имеют наружную белковую оболочку и заключенную в головке нуклеиновую кислоту. У большинства фагов это двунитчатая ДНК, Однако обнаружены фаги, имеющие однонитчатую

ДНК и даже РНК. Размеры молекулы ДНК во много раз превышают величину самого фага.

Фаги обладают специфичностью, которая заключается в их способности размножаться и вызывать лизис только бактерий определенного вида или типа.

Различают видовые фаги, которые лизируют культуру бактерий определенного вида, и типовые фаги, лизирующие отдельные штаммы или варианты внутри одного и того же вида. Существуют и полифаги, которые могут вызывать лизис клеток родственных видов бактерий.

Взаимодействие фага с бактериальной клеткой.

По механизму взаимодействия различают вирулентные и умеренные фаги.

Этапы взаимодействия

Адсорбция

Проникновение (инъекции)

Репродукция

Сборка

Выход

Подробнее по другим сайтам:

А. Адсорбция пассивная за счет разницы в зарядах. Бактериофаг адсорбируется на специальных, специфических для конкретного фага, рецепторах клеточной стенки бактериальной клетки. Необратимая адсорбция – взаимодействие с рецепторами. Если бактериальная клетка не имеет рецепторов для адсорбции конкретного бактериофага, то она к нему не чувствительна. Сферопласты также теряют чувствительность к видовым и типовым фагам, поскольку с потерей клеточной стенки теряют и локализованные на ней рецепторы для адсорбции соответствующих бактериофагов.

Г. В дальнейшем происходит взаимодействие бактериофага с геномом пораженной клетки. Транскрипция с образованием транскриптонов => сборка фага=> разрушение мембраны лизоцимом => изменение осмотического давления => смерть клетки => выход3 00 фагов => быстрый лизис клеток

1. Вирулентные бактериофаги вызывают продуктивную инфекцию бактериальной клетки.

а. Происходит репликация фаговой нуклеиновой кислоты и синтез фаговых белков.

б. Затем происходит сборка фаговых частиц

в. Завершается процесс выходом зрелых фагов.

После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 300 новых фаговых частиц. Под действием фагового лизоцима и внутриклеточного осмотического давления происходит разрушение клеточной сте­ки, выход фагового потомства в окружающую среду и лизис бактерии. Один литический цикл (от момента адсорбции фагов до их выхода из клетки) продолжается 30—40 мин. Процесс бактериофагии проходит несколько циклов, пока не будут лизированы все чувствительные к данному фагу бактерии*

11. Бактериофаги. Этапы и исходы взаимодействия умеренных фагов с бактериальной клеткой. Трансдукция и фаговая конверсия.

Бактериофаги – в основномДНК – содержащие вирусы, паразитирующие в клетках бактерий и одноклеточных организмов, кроме хламидий.

· Одноцепочечная кольцевая ДНК (около 5тыс п.н.), может быть кодирующей и антикодирующей (М13, не разрушают клетку, плюс-цепь кодирует 8 белков);

Трансдукция – способ передачи генетического материала (1-2 гена) с помощью фагов из клетки-донора в клетку-реципиент.

Лизогенная конверсия – способность приобретать новые свойства (детергенты), из-за привнесения новой ген информации

Умеренные БФ. Способны встраивать свой геном в геном бактерии, это ведет к экспрессии генов; суть – генетический паразитизм

· Клетка бактерии начинает синтезировать ферменты, защищающие от других фагов (иммунитет);

· Новые свойства – АБрезистентность / способность выделять токсин

Умеренные БФ могут интегрироваться в хромосому и реплицироваться вместе с ней.

· При вырезании фаговой ДНК из генома прокариота фаг ведет себя подобно плазмиде и транспозону; возможна рекомбинация фаговой ДНК;

· Умеренные фаги, несущие прокариотическую ДНК, способны к трансдукции (переносу информации от одного штамма к другому)

Взаимодействие умеренного фага лямбда с бактериальной клеткой:

1. Этап: проникновение в бактериальную клетку и интеграция в хромосому. Профаг размножается с каждым делением клетки хозяина.

2. Этап: экспрессия ДНК профага в зависимости от факторов (голодание, воздействие ядов и др.); в этом случае профаг активируется и выделяет себя из ДНК хозяина, вводит ее в литический цикл. Активный фаг уничтожает ДНК хозина и производит много своей мРНК для воспроизведения единиц фага. Клетка хозяина разрущается, когда ресурсы исчерпаны, мембрана рушится, фаги выходят наружу.

Дата добавления: 2019-02-26 ; просмотров: 1062 ;

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.