Разместите последовательно этапы внедрения вирусной частицы в клетку-мишень

Этапы взаимодействия вируса с клеткой хозяина:

1. Адсорбция – пусковой механизм, связанный с прикреплением вириона к поверхности клетки. Выделяют две основных фазы адсорбции:

а) неспецифическая обусловлена ионным притяжением между вирусом и клеткой.

б) высокоспецифическая обусловлена гомологией, комплементарностью специфических рецепторов вируса и хозяина (у вируса гриппа – гемагглютинин к сиаловой кислоте гликопротеинов клеток дыхательных путей, у вируса иммунодефицита человека - гликопротеин gp 120 - к СД4 рецепторам Т-хелперов, моноцитов, макрофагов).

Проникновение

а) путем слияния оболочки вириона с мембраной клетки, характерно для некоторых оболочечных вирусов (парамиксовирусов, ретровирусов, герпесвирусов)

б) путем эндоцитоза (пиноцитоза) в результате захватывания и поглощения вириона клеткой: клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эндосомы), содержащей вирус.

3. Освобождение нуклеиновых кислот (депротеинизация) – “раздевание” нуклеокапсида и активация нуклеиновой кислоты. В результате депротеинизации удаляются поверхностные структуры вируса и высвобождается его внутренний компонент, способный вызвать инфекционный процесс.

4. Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса. Синтез нуклеиновых кислот и белков вируса разобщен во времени и пространстве, т.к. осуществляется в разных частях клетки. Такой способ размножения вирусов называется дизъюнктивным.

Синтез белков в клетке осуществляется благодаря процессам транскрипции – переписывания генетической информации с нуклеиновой кислоты в нуклеотидную последовательность информационной РНК (иРНК или мРНК) и трансляции – механизмов, при помощи которых последовательность нуклеотидных оснований мРНК переводится в специфическую последовательность аминокислот в синтезируемом полипептиде на рибосомах клетки хозяина.

5. Сборка вирионов – многоступенчатый процесс, включающий в себя соединение всех компонентов вириона.

Сборка просто устроенных вирусов заключается во взаимодействии вирусных нуклеиновых кислот с капсидными белками и в образовании нуклеокапсидов. У сложно устроенных вирусов сначала формируются нуклеокапсиды, которые взаимодействуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса). У минус-нитевых РНК вирусов в сборку вовлекается матриксный белок (М-белок), который расположен под модифицированной клеточной мембраной.

6. Выход вирусных частиц из клетки взрывным путем или почкованием, экзоцитозом. Полный цикл репродукции вирусов завершается через 5-6 ч (вирус гриппа) или через несколько суток (вирус кори). По взрывному пути выходят из клетки просто устроенные вирусы, не имеющие липопротеиновой оболочки. Из погибающей клетки одновременно выходит большое количество вирионов. Почкование, экзоцитоз характерен вирусам, имеющим липопротеиновую оболочку, которая является производной клеточных мембран. Сначала образовавшийся нуклеокапсид транспортируется к клеточным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида с клеточной мембраной начинается выпячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. Клетка способна длительное время сохранять жизнеспособность и продуцировать вирусное потомство.

Исходы взаимодействия вирусов с клеткой хозяина

1. Продуктивный процесс - репликация (продукция) вирусов. Выделяют:

· продуктивный цитолитический процесс с образованием инфекционного потомства и выходом вирионов во внеклеточную среду.

· продуктивной нецитолитический процесс с образованием инфекционных вирусных частиц без лизиса клетки, которая продолжает функционировать.

Цитопатический эффект является результатом интенсивного размножения и формирования большого количества вирусных частиц (характерный результат продуктивного процесса), вызванного вирусами с высокой цитопатогенностью. Цитопатический эффект действия на клеточные культуры для многих вирусов носит узнаваемый специфический характер;

2. Интегративный процесс - интеграция вирусного генома с геномом клетки хозяина (вирогения). Это особый вариант продуктивного процесса по типу стабильного взаимодействия. Вирус реплицируется вместе с геномом клетки хозяина и может длительно находиться в латентном состоянии. Встраиваться в ДНК - геном хозяина могут только ДНК- вирусы (принцип “ДНК - в ДНК”). Единственные РНК - вирусы, способные интегрироваться в геном клетки хозяина - ретровирусы, имеют для этого специальный механизм. Синтез ДНК провируса на основе геномной РНК с помощью фермента обратной транскриптазы (ревертазы) с последующим встраиванием ДНК в геном хозяина.

3. Абортивный процесс - клетки освобождаются от вируса, не вызывая появление дочерней популяции или появление в меньшем количестве. При инфицировании дефектным вирусом, для репликации которого нужен вирус- помощник, самостоятельная репликация этих вирусов невозможна. Например, дельта вирус или вирус гепатита D может реплицироваться в клетке только при наличии вируса гепатита B, его HВs – антигена. При инфицировании вирусом генетически нечувствительных к нему клеток или при заражении чувствительных клеток вирусом в неблагоприятных условиях.

Возможные последствия инфекционного процесса, вызванного вирусами для клетки:

  • сохранение жизнеспособности клетки
  • деструкция клетки, возникающая при цитолитической инфекции (цитопатогенное действие вируса - ЦПД)
  • образование многоядерных клеток в результате их слияния (симпластообразование)
  • образование вирусных внутриклеточных включений

· онкогенная трансформация клетки при интеграции вирусного генома с геномом клетки (вирогении, интегративной инфекции)

Дата добавления: 2019-09-13 ; просмотров: 576 ;

Взаимодействие вируса с клеткой хозяина - это сложный многоступенчатый процесс, который начинается с адсорбции вирусных частиц на рецепторах клетки хозяина и продолжается после их проникновения внутрь клетки. В результате такого взаимодействия развивается либо продуктивная, либо абортивная, либо интегративная форма клеточной инфекции.

При продуктивной форме происходит размножение, точнее репродукция вируса, при абортивной - ее нарушение на одном из этапов, при интегративной - интеграция вирусной нуклеиновой кислоты в клеточный геном.

Вирусы - самореплицирующая форма, неспособная к бинарному делению, в отличие от микроорганизмов с клеточной организацией.

Размножение, или репродукция вирусов происходит путем репликации их нуклеиновой кислоты, и биосинтеза белков с последующей самосборкой вириона.

Вирусная репродукция представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека и животных, насекомых, растений и бактерий, которая состоит в подчинении клеточных матрично-генетических механизмов вирусной информации.

Жизненный цикл вирусов начинается с их адсорбции на мембране клетки -мишени и заканчивается выходом вновь синтезированных вирионов из клетки. Цикл включает в себя следующие стадии:

2. Внедрение вириона в клетку, сопряженное с одновременным разрушением его суперкапсидных и капсидных белков и высвобождением его геномной нуклеиновой кислоты.

3. Внутриклеточное размножение вируса, включающее в себя целую серию последовательных событий, заканчивающихся формированием зрелых вирионов и выходом их из клетки.

Адсорбциявируса на мембране клетки является пусковым моментом реализации его патогенных свойств, ибо без этого вирус не может проникнуть в клетку и размножаться в ней, он просто обречен на гибель.

Для каждого вируса на мембране клеток существуют специфические рецепторы, с которыми вирусы связываются с помощью своих рецепторов на основе так называемой органотропности вирусов. В связи с разнообразием клеточных и вирусных рецепторов на одних и тех же клетках могут адсорбироваться разные вирусы. Например, рецепторами для вируса гриппа являются мукопептиды, содержащие свободную N -ацетилнейраминовую кислоту, а рецептором вируса, распознающим его, является белок - гемагглютинин.

Проникновение вируса в клетку.Известны два механизма проникновения вируса в клетку:

- посредством слияния суперкапсида вируса с мембраной клетки. Благодаря этому происходит высвобождение нуклеокапсида в цитоплазму с последующей реализацией свойств вирусного генома.

- механизм пиноцитоза (виропексиса). В этом случае вирус связывается со специфическими рецепторами в области "окаймленной" ямки. Она впячивается внутрь клетки и превращается в окаймленный пузырек. Пузырек, содержащий поглощенный вирион, быстро сливается с промежуточным пузырьком - эндосомой, который сливается с лизосомой. Благодаря особым свойствам вирусных суперкапсидных белков происходит слияние липидных слоев суперкапсида и мембраны лизосомы, в результате этого нуклеокапсид оказывается в цитолизе клетки, где происходит дальнейшее "раздевание" нуклеокапсида и высвобождение геномной нуклеиновой кислоты.

Внутриклеточное размножение.Проникнув в клетку, вирусный геном полностью подчиняет жизнь клетки своим интересам и с помощью ее белоксинтезирующей системы и систем генераций энергии осуществляет собственное воспроизводство, очень часто ценой жизни клетки.

Транскрипция и репликация вирусных геномов осуществляется несколькими путями:

  1. Вирусы с негативным геномом РНК (минус-нитевые) имеют в своем составе вирусспецифическую РНК-полимеразу или транскриптазу. Они синтезируют и РНК на матрице геномной РНК. Подобный фермент отсутствует в нормальных клетках, но синтезируется клетками, зараженными вирусами.
  2. У вирусов с положительным геномом РНК (плюс-нитевые) функцию и РНК выполняет сам геном, который транслирует содержащуюся в нем информацию на рибосомы хозяиа.
  3. РНК - содержащие ретровирусы стоят особняком, так как в их составе есть фермент обратная транскриптаза или ревертаза, способная переписыать информацию с РНК на ДНК.
  4. Репликация вирусной ДНК происходит на обеих нитях ДНК при участии ДНК - полимеразы.

Сборка вириона состоит прежде всего в образовании нуклеокапсидов. Поскольку синтез вирусных белков и нуклеиновых кислот происходит в разных структурах клетки. Необходима транспортировка составных частей вириона в одно место сборки. При этом вирусные белки и нуклеиновые кислоты обладают способностью узнавать и самопроизвольно соединяться друг с другом. Многие простые вирионы собираются на репликативных комплексах - мембранах цитоплазматического ретикулума. У сложных вирионов сборка нуклеокапсида начинается на репликативных комплексах, а заканчивается на плазматической мембране. После отделения почки, содержащей нуклеокапсид и суперкапсидные белки, образуются свободные вирионы. Они через клеточную плазматическую мембрану проходят во внеклеточное пространство, дальнейшее формирование вириона происходит в мембранах цитоплазматического ретикулума и в аппарате Гольджи, откуда вирус транспортируется на поверхность клетки.

Выход вирусных частициз клетки - происходит двумя путями - простые вирусы, лишенные суперкапсида, например, пикорнавирусы вызывают деструкцию клетки и попадают во внеклеточное пространство.

Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования, в результате чего она еще сохраняет свою жизнеспособность (вирус гриппа и др.).

Этапы взаимодействия вируса с клеткой хозяина:

1. Адсорбция – пусковой механизм, связанный с прикреплением вириона к поверхности клетки. Выделяют две основных фазы адсорбции:

а) неспецифическая обусловлена ионным притяжением между вирусом и клеткой.

б) высокоспецифическая обусловлена гомологией, комплементарностью специфических рецепторов вируса и хозяина (у вируса гриппа – гемагглютинин к сиаловой кислоте гликопротеинов клеток дыхательных путей, у вируса иммунодефицита человека - гликопротеин gp 120 - к СД4 рецепторам Т-хелперов, моноцитов, макрофагов).

Проникновение

а) путем слияния оболочки вириона с мембраной клетки, характерно для некоторых оболочечных вирусов (парамиксовирусов, ретровирусов, герпесвирусов)

б) путем эндоцитоза (пиноцитоза) в результате захватывания и поглощения вириона клеткой: клеточная мембрана с прикрепленным вирионом впячивается с образованием внутриклеточной вакуоли (эндосомы), содержащей вирус.

3. Освобождение нуклеиновых кислот (депротеинизация) – “раздевание” нуклеокапсида и активация нуклеиновой кислоты. В результате депротеинизации удаляются поверхностные структуры вируса и высвобождается его внутренний компонент, способный вызвать инфекционный процесс.

4. Синтез нуклеиновых кислот и вирусных белков, т.е. подчинение систем клетки хозяина и их работа на воспроизводство вируса. Синтез нуклеиновых кислот и белков вируса разобщен во времени и пространстве, т.к. осуществляется в разных частях клетки. Такой способ размножения вирусов называется дизъюнктивным.

Синтез белков в клетке осуществляется благодаря процессам транскрипции – переписывания генетической информации с нуклеиновой кислоты в нуклеотидную последовательность информационной РНК (иРНК или мРНК) и трансляции – механизмов, при помощи которых последовательность нуклеотидных оснований мРНК переводится в специфическую последовательность аминокислот в синтезируемом полипептиде на рибосомах клетки хозяина.

5. Сборка вирионов – многоступенчатый процесс, включающий в себя соединение всех компонентов вириона.

Сборка просто устроенных вирусов заключается во взаимодействии вирусных нуклеиновых кислот с капсидными белками и в образовании нуклеокапсидов. У сложно устроенных вирусов сначала формируются нуклеокапсиды, которые взаимодействуют с модифицированными мембранами клеток (будущей липопротеиновой оболочкой вируса). У минус-нитевых РНК вирусов в сборку вовлекается матриксный белок (М-белок), который расположен под модифицированной клеточной мембраной.

6. Выход вирусных частиц из клетки взрывным путем или почкованием, экзоцитозом. Полный цикл репродукции вирусов завершается через 5-6 ч (вирус гриппа) или через несколько суток (вирус кори). По взрывному пути выходят из клетки просто устроенные вирусы, не имеющие липопротеиновой оболочки. Из погибающей клетки одновременно выходит большое количество вирионов. Почкование, экзоцитоз характерен вирусам, имеющим липопротеиновую оболочку, которая является производной клеточных мембран. Сначала образовавшийся нуклеокапсид транспортируется к клеточным мембранам, в которые уже встроены вирусоспецифические белки. Затем в области контакта нуклеокапсида с клеточной мембраной начинается выпячивание этих участков. Сформировавшаяся почка отделяется от клетки в виде сложно устроенного вируса. Клетка способна длительное время сохранять жизнеспособность и продуцировать вирусное потомство.

Исходы взаимодействия вирусов с клеткой хозяина

1. Продуктивный процесс - репликация (продукция) вирусов. Выделяют:

· продуктивный цитолитический процесс с образованием инфекционного потомства и выходом вирионов во внеклеточную среду.

· продуктивной нецитолитический процесс с образованием инфекционных вирусных частиц без лизиса клетки, которая продолжает функционировать.

Цитопатический эффект является результатом интенсивного размножения и формирования большого количества вирусных частиц (характерный результат продуктивного процесса), вызванного вирусами с высокой цитопатогенностью. Цитопатический эффект действия на клеточные культуры для многих вирусов носит узнаваемый специфический характер;

2. Интегративный процесс - интеграция вирусного генома с геномом клетки хозяина (вирогения). Это особый вариант продуктивного процесса по типу стабильного взаимодействия. Вирус реплицируется вместе с геномом клетки хозяина и может длительно находиться в латентном состоянии. Встраиваться в ДНК - геном хозяина могут только ДНК- вирусы (принцип “ДНК - в ДНК”). Единственные РНК - вирусы, способные интегрироваться в геном клетки хозяина - ретровирусы, имеют для этого специальный механизм. Синтез ДНК провируса на основе геномной РНК с помощью фермента обратной транскриптазы (ревертазы) с последующим встраиванием ДНК в геном хозяина.

3. Абортивный процесс - клетки освобождаются от вируса, не вызывая появление дочерней популяции или появление в меньшем количестве. При инфицировании дефектным вирусом, для репликации которого нужен вирус- помощник, самостоятельная репликация этих вирусов невозможна. Например, дельта вирус или вирус гепатита D может реплицироваться в клетке только при наличии вируса гепатита B, его HВs – антигена. При инфицировании вирусом генетически нечувствительных к нему клеток или при заражении чувствительных клеток вирусом в неблагоприятных условиях.

Возможные последствия инфекционного процесса, вызванного вирусами для клетки:

  • сохранение жизнеспособности клетки
  • деструкция клетки, возникающая при цитолитической инфекции (цитопатогенное действие вируса - ЦПД)
  • образование многоядерных клеток в результате их слияния (симпластообразование)
  • образование вирусных внутриклеточных включений

· онкогенная трансформация клетки при интеграции вирусного генома с геномом клетки (вирогении, интегративной инфекции)

Дата добавления: 2019-09-13 ; просмотров: 577 ;

Сейчас известно 39 видов коронавирусов, в каждый вид могут входить десятки и сотни штаммов. Кроме того, есть еще 10 видов — кандидатов в коронавирусы. Специалисты пока только проверяют, можно ли их считать настоящими коронавирусами. У них широкий спектр хозяев среди птиц и зверей, у которых они вызывают заболевания дыхательной системы и желудочно-кишечного тракта. К людям коронавирусы приходят от животных: вирус атипичной пневмонии 2002—2003 годов SARS-CoV пришел от подковоносых летучих мышей, от которых он перескочил в мусанга, или малайскую пальмовую куницу, а из мусанга — уже в человека. (Любителям кофе малайская пальмовая куница должна быть знакома — это тот самый зверек, без которого не было бы кофе копи-лювак: мусангам скармливают кофейные зерна, которые определенным образом ферментируются в кишечнике, изменяя вкусовые свойства; кофе из зерен, которые прогнали через мусангов, считается особо изысканным и стоит весьма немалых денег.)

Еще один человеческий коронавирус известен по вспышке ближневосточного респираторного синдрома, первые случаи которого были зарегистрированы в 2012 году в Саудовской Аравии, — он получил название MERS-CoV. Этот вирус также пришел к людям от летучих мышей с промежуточной остановкой в одногорбых верблюдах (оттого его еще называют верблюжьим гриппом, что неправильно, — коронавирусы от вирусов гриппа отличаются). Умирают от него более трети заразившихся, однако заразиться им сложно: с момента появления вируса и до начала этого года в мире зарегистрировано лишь около двух с половиной тысяч случаев.

Подозревают, что и новый вирус SARS-CoV-2 тоже пришел к нам от летучих мышей.

Наконец, есть еще четыре человеческих коронавируса, два из которых, HCoV-229E и HCoV-OC43, были известны еще до атипичной пневмонии от SARS-CoV, а два других, HCoV-NL63 и HCoV-HKU1, открыли в 2004 и 2005 годах. Все четыре не вызывают ничего серьезнее мягкой простуды; хотя коронавирусная простуда встречается довольно часто — на ее счет относят 15—30% всей простуды в мире.

Но об эпидемиологии коронавирусов мы рассказывать не будем, а вместо этого поговорим о том, как они устроены и как на них реагируют наши клетки.

Обладатели белковой короны

И белок S, и белок HE сидят в мембранной липидной оболочке. Откуда она берется? Как мы помним, наши клетки окружены мембраной и внутри них существует много мембранных органелл — клеточных органов, выполняющих разные функции и ради правильной работы отделенных от остальной клетки двуслойной липидной мембраной. Ее-то вирус и заимствует, выходя из клетки, а как именно, скажем чуть ниже. Кроме S и HE в ней сидит очень много белка М, который поддерживает и структурирует мембрану, и еще немного белка E. Под липидной оболочкой с белками мы найдем геном вируса — нить молекулы РНК, которая усажена белком N: он упаковывает вирусную РНК в компактную свернутую спираль. (Белковая оболочка вирусов, непосредственно взаимодействующая с нуклеиновой кислотой, называется капсидом.) Когда РНК попадает в клетку, то на ней сразу можно синтезировать белки, и такую РНК у вирусов обозначают плюсом.

По этим признакам коронавирусы относят к РНК-содержащим вирусам, чей геном представляет собой одну-единственную плюс-цепь РНК. Так же выглядит геном у множества других вирусов, среди которых есть риновирусы (одна из самых частых причин простуды) и вирус гепатита С. В то же время коронавирусы относят к оболочечным вирусам, у которых кроме нуклеиновой кислоты и связанного с ней структурно-защитного белка (у коронавирусов это белок N) есть еще мембранная оболочка. К оболочечным вирусам еще относятся, например, вирусы герпеса, у которых наследственная информация хранится в ДНК, и ВИЧ. Как видим, по отдельности разные молекулярные черты можно найти у множества вирусов и лишь по их сочетанию отделить одну группу вирусов от другой.

Кстати, геном в виде РНК — это, можно сказать, слабость коронавирусов. В нуклеиновых кислотах время от времени появляются мутации либо из-за внешних факторов, вроде фоновой радиации, либо из-за стандартных ошибок белков, которые эти нуклеиновые кислоты копируют. Но в клеточной ДНК мутации могут быть исправлены специальными ремонтными белками. Этим же ремонтом способны воспользоваться вирусы с геномом в виде ДНК или же те, которые геномную РНК на время копируют в ДНК (такие вирусы называются ретровирусами). А в коронавирусной РНК ошибки никак не исправляются. Мутации помогают вирусам сменить хозяина, но среди мутаций есть очень много вредных, и если вирус не может никак корректировать дефекты в ДНК, они в какой-то момент могут сделать его просто нежизнеспособным.

Любые вирусы — это, грубо говоря, лишь комок молекул, пусть и сложно устроенный. Собственного обмена веществ у вирусов нет, и размножаться за пределами клетки они не могут. Вирусам с мембранной оболочкой проникнуть в клетку проще как из-за самой мембраны, так и благодаря сидящим на ней белкам: они хорошо подходят к клеточным рецепторам. Кроме того, белки мембранной оболочки, как собственно вирусные, так и те, которые вирус прихватил у клетки вместе с куском мембраны, помогают вирусу уходить от иммунной атаки. Но из-за мембраны такие вирусы более чувствительны к разным неблагоприятным факторам, вроде обезвоживания или моющих детергентов, мембрану разрушающих. Поэтому вирусы с мембранной оболочкой лучше всего передаются от хозяина к хозяину, а сидеть на какой-то поверхности и ждать, когда их оттуда снимет потенциальный хозяин, они долго не могут. Этим они отличаются от вирусов без мембраны, которые представляют собой нуклеиновую кислоту, заключенную в белковый капсид, — они более устойчивы в окружающей среде, но проникнуть в клетку для них зачастую сложнее.

Внедрение в клетку

Разные вирусы пользуются разными клеточными белками для входа. Так, вирус атипичной пневмонии SARS-CoV и относительно безобидный HCoV-NL63 связываются с ангиотензинпревращающим ферментом 2, который помогает регулировать кровяное давление, участвует в управлении иммунитетом и играет роль еще в целом ряде процессов. Но белка одного вида для входа бывает недостаточно, поэтому, например, SARS-CoV нужен еще белок TMPRSS2 — одна из сериновых протеаз, участвующая в разных биохимических реакциях. Вирус сначала связывается с одним белком на поверхности клетки, а потом второй белок на поверхности клетки режет вирусный белок S, после чего мембраны вируса и клетки соединяются.


Схема жизненного цикла коронавируса. Проникнув в клетку, вирус высвобождает свою РНК, на которой рибосомы — клеточные машины для белкового синтеза — собирают вирусные белки, необходимые для формирования мембранных пузырьков и для синтеза плюс-цепи геномной РНК — гРНК. На вспомогательных мембранных пузырьках появляются вирусные белки, образующие RTC — replication transcription complex, этот комплекс выполняет репликацию (удвоение генома вируса) и транскрипцию — синтез коротких субгеномных РНК (сгРНК), предназначенных для сборки структурных вирусных белков. Структурный белок N соединяется с геномной РНК и образует нуклеокапсид вируса (геном плюс капсидный белок). На эндоплазматической сети синтезируются другие структурные белки, которые организуют вирусу липидную мембрану.

Вирус проник в клетку, и теперь он начинает копировать свой геном, то есть молекулу РНК, и синтезировать белки, нужные для копирования РНК и для формирования вирусных частиц. Кроме полных геномных РНК коронавирусы создают еще набор более коротких РНК — они синтезируются на больших геномных РНК и нужны только для синтеза белков; в вирусные частицы эти короткие РНК не попадают (точно так же ведут себя некоторые другие вирусы, которые вместе с коронавирусами объединяют в группу Nidovirales). Все вирусные РНК синтезируются в особых белковых комплексах, которые, в свою очередь, закреплены в небольших мембранных пузырьках. Эти пузырьки создает сам вирус: его белки вторгаются во внутриклеточные мембраны и фрагментируют их, создавая пузырьки-везикулы, чтобы РНК-синтезирующим комплексам было к чему пришвартоваться.

Часть насинтезированной РНК остается плавать в цитоплазме клетки — на ней синтезируется белок N, который будет упаковывать геномную вирусную РНК в спираль. Другие структурные белки, те, что потом окажутся в мембранной оболочке вируса (S, M и пр.), синтезируются на РНК, осевшей на особой внутриклеточной структуре — эндоплазматической сети, или эндоплазматическом ретикулуме (ЭР). Эндоплазматическая сеть — это огромная система мембранных канальцев, цистерн и пузырьков, на которых сидят белоксинтезирующие молекулярные машины рибосомы и собирают белки в соответствии с информацией в РНК. Готовые белки погружаются внутрь полостей ЭР, где приобретают правильную пространственную форму и потом либо переходят в клеточную цитоплазму, либо отправляются на экспорт, наружу из клетки, будучи заключены в транспортный мембранный пузырек.

Особенности внутриклеточной борьбы

О том, что у нее внутри орудует вирус, клетка может догадаться по неполадкам с внутренними мембранами — мы помним, что коронавирусы фрагментируют мембраны, чтобы дать опору своим белкам, синтезирующим РНК, и сами вирусные частицы прихватывают себе куски мембран. Кроме того, вирусные белки накапливаются в эндоплазматической сети и вызывают так называемый ЭР-стресс, то есть стресс эндоплазматического ретикулума. ЭР-стресс заставляет клетку остановить синтез белков (что, несомненно, бьет по вирусу — ведь он зависит от клеточной белоксинтезирующей машины) и активирует сигнальные молекулярные пути, которые включают программы клеточного суицида. Наконец, клетка может понять по вирусной РНК, что внутри у нее поселилась инфекция, и в ответ начать синтез интерферона первого типа. Это сигнальный белок, который выходит из клетки и оповещает всех об инфекции, в результате здоровые клетки готовятся защищаться от своей соседки, а иммунные клетки стремятся уничтожить зараженную клетку.

Вирусы - это наименьшие структуры, обладающие свойствами живого организма. Их размер составляет от 20 до 300 нм в длину. Они невидимы в оптический микроскоп и легко проходят через фильтры, задерживающие бактерии.

Согласно классификации организмов вирусы находятся на границе живого и неживого. Их считают живыми, так как они содержат генетический материал и способны размножаться; в то же время их можно считать неживыми, поскольку они не имеют клеточной организации - вирусы неклеточные формы жизни. Вне клетки хозяина вирусы не проявляют признаков жизни.

Вирусы и болезни. Поскольку вирусы являются облигатными паразитами, они неизбежно наносят вред клетке-хозяину, вызывая ряд серьезных заболеваний. Вирусные заболевания часто с трудом поддаются лечению, поскольку антибиотики в данном случае не действуют (у вирусов нет метаболических процессов, которые можно было бы ингибировать); вакцины не всегда эффективны, так как вирусы мутируют, изменяя свои антигенные свойства; химиотерапия может не только ингибировать репликацию вируса, но и принести вред самим клеткам. Обычно используются такие формы контроля, как вакцинация и удаление источника заражения. Некоторые ретровирусы могут играть роль в лечении заболеваний - они могут быть использованы для переноса в хозяйскую клетку ДНК, содержащей дефектную форму определенного гена (таким путем может быть излечена, например, ФКУ - фенилкетонурия).

Обычный вирус представляет собой простую структуру, состоящую из кора (сердцевины), содержащего нуклеиновую кислоту (ДНК или РНК), и белковой оболочки, окружающей сердцевину.


это область, ограниченная капсидом. Он не является цитоплазмой и не содержит органелл.

Выросты на поверхности

капсида отвечают за антигенные свойства вируса

вируса может быть представлен либо ДНК, либо РНК. Количество генов очень невелико - в них содержится только информация, необходимая для репликации вирусных субъединиц и для сборки из них целой вирусной частицы, или вириона.

состоит из множества идентичных субъединиц, называемых капсомерами. Они самоорганизуются в строго симметричный капсид, форма которого используется для классификации вирусов.

окружает капсид у некоторых вирусов, обычно у крупных. Эта оболочка чаще всего образуется из элементов клетки-хозяина, формируясь в процессе выхода вириона из клетки. Она может играть важную роль в обеспечении способности вируса преодолевать защитные барьеры клетки. Такую оболочку имеет, например, вирус иммунодефицита человека (ВИЧ).


Вирусы используют ресурсы клетки-хозяина для образования многочисленных копий самих себя, и их сборка происходит внутри клетки. процесс делится на несколько этапов:

Этапы жизненного цикла вируса

Образование связи между белками вирусного капсида и рецепторами на поверхности клетки-хозяина. Эта связь определяет круг хозяев вируса, то есть инфицирование вирусом только тех клеток, которые способны осуществить его репликацию. иИзменения белка оболочки служит сигналом к проникновению вируса в клетку.

Проникновение в клетку

Вирус доставляет внутрь клетки свой генетический материал (иногда собственные белки). Разные вирусы используют разные стратегии.

Процесс потери каспида при помощи вирусных ферментов или клетки-хозяина, либо результат обычной диссоциации.

Репликация вируса - включает синтез мРНК ранних генов вируса. Синтез вирусных белков, сборка сложных белков и репликацию вирусного генома.

Сборка вирусных частиц, затем модификация белков.

Выход из клетки

Вирусы могут покинуть клетку после лизиса, процесса, в ходе которого клетка погибает из-за разрыва мембраны и клеточной стенки. Активно размножающийся вирус не всегда убивает клетку-хозяина. Оболочечные вирусы (например ВИЧ) обычно отделяются от клетки путём отпочковывания.

_______________

Источник информации: Биология человека в диаграммах / В.Р. Пикеринг — 2003.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.