Атака вирусов по сети


Порядок действий при обнаружении сетевых атак.

1. Классификация сетевых атак

1.1. Снифферы пакетов

Сниффер пакетов представляет собой прикладную программу, которая использует сетевую карту, работающую в режиме promiscuous mode (в этом режиме все пакеты, полученные по физическим каналам, сетевой адаптер отправляет приложению для обработки). При этом сниффер перехватывает все сетевые пакеты, которые передаются через определенный домен.

IP-спуфинг происходит, когда хакер, находящийся внутри системы или вне ее выдает себя за санкционированного пользователя. Это можно сделать двумя способами. Во-первых, хакер может воспользоваться IP-адресом, находящимся в пределах диапазона санкционированных IP-адресов, или авторизованным внешним адресом, которому разрешается доступ к определенным сетевым ресурсам. Атаки IP-спуфинга часто являются отправной точкой для прочих атак. Классический пример — атака DoS, которая начинается с чужого адреса, скрывающего истинную личность хакера.

Обычно IP-спуфинг ограничивается вставкой ложной информации или вредоносных команд в обычный поток данных, передаваемых между клиентским и серверным приложением или по каналу связи между одноранговыми устройствами. Для двусторонней связи хакер должен изменить все таблицы маршрутизации, чтобы направить трафик на ложный IP-адрес. Некоторые хакеры, однако, даже не пытаются получить ответ от приложений. Если главная задача состоит в получении от системы важного файла, ответы приложений не имеют значения.

Если же хакеру удается поменять таблицы маршрутизации и направить трафик на ложный IP-адрес, хакер получит все пакеты и сможет отвечать на них так, будто он является санкционированным пользователем.

1.3. Отказ в обслуживании (Denial of Service — DoS)

DoS является наиболее известной формой хакерских атак. Против атак такого типа труднее всего создать стопроцентную защиту.

Наиболее известные разновидности DoS:

  • TCP SYN Flood Ping of Death Tribe Flood Network (TFN);
  • Tribe Flood Network 2000 (TFN2K);
  • Trinco;
  • Stacheldracht;
  • Trinity.

Атаки DoS отличаются от атак других типов. Они не нацелены на получение доступа к сети или на получение из этой сети какой-либо информации. Атака DoS делает сеть недоступной для обычного использования за счет превышения допустимых пределов функционирования сети, операционной системы или приложения.

В случае использования некоторых серверных приложений (таких как Web-сервер или FTP-сервер) атаки DoS могут заключаться в том, чтобы занять все соединения, доступные для этих приложений и держать их в занятом состоянии, не допуская обслуживания обычных пользователей. В ходе атак DoS могут использоваться обычные Интернет-протоколы, такие как TCP и ICMP (Internet Control Message Protocol). Большинство атак DoS опирается не на программные ошибки или бреши в системе безопасности, а на общие слабости системной архитектуры. Некоторые атаки сводят к нулю производительность сети, переполняя ее нежелательными и ненужными пакетами или сообщая ложную информацию о текущем состоянии сетевых ресурсов. Этот тип атак трудно предотвратить, так как для этого требуется координация действий с провайдером. Если трафик, предназначенный для переполнения вашей сети, не остановить у провайдера, то на входе в сеть вы это сделать уже невозможно, потому что вся полоса пропускания будет занята. Когда атака этого типа проводится одновременно через множество устройств, атака является распределенной DoS (DDoS — distributed DoS).

1.4. Парольные атаки

Еще одна проблема возникает, когда пользователи применяют один и тот же (пусть даже очень хороший) пароль для доступа ко многим системам: корпоративной, персональной и системам Интернет. Поскольку устойчивость пароля равна устойчивости самого слабого хоста, хакер, узнавший пароль через этот хост, получает доступ ко всем остальным системам, где используется тот же пароль.

1.5. Атаки типа Man-in-the-Middle

Для атаки типа Man-in-the-Middle хакеру нужен доступ к пакетам, передаваемым по сети. Такой доступ ко всем пакетам, передаваемым от провайдера в любую другую сеть, может, к примеру, получить сотрудник этого провайдера. Для атак этого типа часто используются снифферы пакетов, транспортные протоколы и протоколы маршрутизации. Атаки проводятся с целью кражи информации, перехвата текущей сессии и получения доступа к частным сетевым ресурсам, для анализа трафика и получения информации о сети и ее пользователях, для проведения атак типа DoS, искажения передаваемых данных и ввода несанкционированной информации в сетевые сессии.

1.6. Атаки на уровне приложений

Атаки на уровне приложений могут проводиться несколькими способами. Самый распространенный из них состоит в использовании слабостей серверного программного обеспечения (sendmail, HTTP, FTP). Используя эти слабости, хакеры могут получить доступ к компьютеру от имени пользователя, работающего с приложением (обычно это бывает не простой пользователь, а привилегированный администратор с правами системного доступа). Сведения об атаках на уровне приложений широко публикуются, чтобы дать возможность администраторам исправить проблему с помощью коррекционных модулей (патчей). Главная проблема с атаками на уровне приложений состоит в том, что они часто пользуются портами, которым разрешен проход через межсетевой экран. К примеру, хакер, эксплуатирующий известную слабость Web-сервера, часто использует в ходе атаки ТСР порт 80. Поскольку Web-сервер предоставляет пользователям Web-страницы, межсетевой экран должен предоставлять доступ к этому порту. С точки зрения межсетевого экрана, атака рассматривается как стандартный трафик для порта 80.

1.7. Сетевая разведка

Сетевой разведкой называется сбор информации о сети с помощью общедоступных данных и приложений. При подготовке атаки против какой-либо сети хакер, как правило, пытается получить о ней как можно больше информации. Сетевая разведка проводится в форме запросов DNS, эхо-тестирования (ping sweep) и сканирования портов. Запросы DNS помогают понять, кто владеет тем или иным доменом и какие адреса этому домену присвоены. Эхо-тестирование (ping sweep) адресов, раскрытых с помощью DNS, позволяет увидеть, какие хосты реально работают в данной среде. Получив список хостов, хакер использует средства сканирования портов, чтобы составить полный список услуг, поддерживаемых этими хостами. И, наконец, хакер анализирует характеристики приложений, работающих на хостах. В результате добывается информация, которую можно использовать для взлома.

1.8. Злоупотребление доверием

1.9. Переадресация портов

Переадресация портов представляет собой разновидность злоупотребления доверием, когда взломанный хост используется для передачи через межсетевой экран трафика, который в противном случае был бы обязательно отбракован. Примером приложения, которое может предоставить такой доступ, является netcat.

1.10. Несанкционированный доступ

2. Методы противодействия сетевым атакам

2.1. Смягчить угрозу сниффинга пакетов можно с помощью следующих средств:

2.1.2. Коммутируемая инфраструктура - Еще одним способом борьбы со сниффингом пакетов в сетевой среде является создание коммутируемой инфраструктуры, при этом хакеры могут получить доступ только к трафику, поступающему на тот порт, к которому они подключены. Коммутируемая инфраструктуры не ликвидирует угрозу сниффинга, но заметно снижает ее остроту.

2.1.4. Криптография - Самый эффективный способ борьбы со сниффингом пакетов не предотвращает перехвата и не распознает работу снифферов, но делает эту работу бесполезной. Если канал связи является криптографически защищенным, это значит, что хакер перехватывает не сообщение, а зашифрованный текст (то есть непонятную последовательность битов).

2.2. Угрозу спуфинга можно ослабить (но не устранить) с помощью следующих мер:

2.2.1. Контроль доступа - Самый простой способ предотвращения IP-спуфинга состоит в правильной настройке управления доступом. Чтобы снизить эффективность IP-спуфигна, контроль доступа настраивается на отсечение любого трафика, поступающего из внешней сети с исходным адресом, который должен располагаться внутри вашей сети. Это помогает бороться с IP-спуфингом, когда санкционированными являются только внутренние адреса. Если санкционированными являются и некоторые адреса внешней сети, данный метод становится неэффективным.

2.2.3. Наиболее эффективный метод борьбы с IP-спуфингом тот же, что и в случае со сниффингом пакетов: необходимо сделать атаку абсолютно неэффективной. IP-спуфинг может функционировать только при условии, что аутентификация происходит на базе IP-адресов. Поэтому внедрение дополнительных методов аутентификации делает этот вид атак бесполезными. Лучшим видом дополнительной аутентификации является криптографическая. Если она невозможна, хорошие результаты может дать двухфакторная аутентификация с использованием одноразовых паролей.

2.3. Угроза атак типа DoS может снижаться следующими способами:

2.3.1. Функции анти-спуфинга - правильная конфигурация функций анти-спуфинга на ваших маршрутизаторах и межсетевых экранах поможет снизить риск DoS. Эти функции, как минимум, должны включать фильтрацию RFC 2827. Если хакер не сможет замаскировать свою истинную личность, он вряд ли решится провести атаку.

2.3.2. Функции анти-DoS - правильная конфигурация функций анти-DoS на маршрутизаторах и межсетевых экранах может ограничить эффективность атак. Эти функции ограничивают число полуоткрытых каналов в любой момент времени.

2.3.3. Ограничение объема трафика (traffic rate limiting) – договор с провайдером (ISP) об ограничении объем трафика. Этот тип фильтрации позволяет ограничить объем некритического трафика, проходящего сети. Обычным примером является ограничение объемов трафика ICMP, который используется только для диагностических целей. Атаки (D) DoS часто используют ICMP.

2.3.4. Блокирование IP адресов – после анализа DoS атаки и выявления диапазона IP адресов, с которых осуществляется атака, обратиться к провайдеру для их блокировки.

2.4. Парольных атак можно избежать, если не пользоваться паролями в текстовой форме. Одноразовые пароли и/или криптографическая аутентификация могут практически свести на нет угрозу таких атак. Не все приложения, хосты и устройства поддерживают указанные выше методы аутентификации.

При использовании обычных паролей, необходимо придумать такой пароль, который было бы трудно подобрать. Минимальная длина пароля должна быть не менее восьми символов. Пароль должен включать символы верхнего регистра, цифры и специальные символы (#, %, $ и т.д.). Лучшие пароли трудно подобрать и трудно запомнить, что вынуждает пользователей записывать пароли на бумаге.

2.5. Эффективно бороться с атаками типа Man-in-the-Middle можно только с помощью криптографии. Если хакер перехватит данные зашифрованной сессии, у него на экране появится не перехваченное сообщение, а бессмысленный набор символов. Заметим, что, если хакер получит информацию о криптографической сессии (например, ключ сессии), это может сделать возможной атаку Man-in-the-Middle даже в зашифрованной среде.

2.6. Полностью исключить атаки на уровне приложений невозможно. Хакеры постоянно открывают и публикуют в Интернете все новые уязвимые места прикладных программ. Самое главное — хорошее системное администрирование.

Меры, которые можно предпринять, чтобы снизить уязвимость для атак этого типа:

  • чтение и/или анализ лог-файлов операционных систем и сетевые лог-файлов с помощью специальных аналитических приложений;
  • своевременное обновление версий операционных систем и приложений и установка последних коррекционных модулей (патчей);
  • использование систем распознавания атак (IDS).

2.7. Полностью избавиться от сетевой разведки невозможно. Если отключить эхо ICMP и эхо-ответ на периферийных маршрутизаторах, вы избавитесь от эхо-тестирования, но потеряете данные, необходимые для диагностики сетевых сбоев. Кроме того, сканировать порты можно и без предварительного эхо-тестирования. Просто этой займет больше времени, так как сканировать придется и несуществующие IP-адреса. Системы IDS на уровне сети и хостов обычно хорошо справляются с задачей уведомления администратора о ведущейся сетевой разведке, что позволяет лучше подготовиться к предстоящей атаке и оповестить провайдера (ISP), в сети которого установлена система, проявляющая чрезмерное любопытство.

2.8. Риск злоупотребления доверием можно снизить за счет более жесткого контроля уровней доверия в пределах своей сети. Системы, расположенные с внешней стороны межсетевого экрана, никогда не должны пользоваться абсолютным доверием со стороны защищенных экраном систем. Отношения доверия должны ограничиваться определенными протоколами и, по возможности, аутентифицироваться не только по IP-адресам, но и по другим параметрам.

2.9. Основным способом борьбы с переадресацией портов является использование надежных моделей доверия (см. п. 2.8). Кроме того, помешать хакеру установить на хосте свои программные средства может хост-система IDS (HIDS).

2.10. Способы борьбы с несанкционированным доступом достаточно просты. Главным здесь является сокращение или полная ликвидация возможностей хакера по получению доступа к системе с помощью несанкционированного протокола. В качестве примера можно рассмотреть недопущение хакерского доступа к порту telnet на сервере, который предоставляет Web-услуги внешним пользователям. Не имея доступа к этому порту, хакер не сможет его атаковать. Что же касается межсетевого экрана, то его основной задачей является предотвращение самых простых попыток несанкционированного доступа.

3. Алгоритм действий при обнаружении сетевых атак

3.1. Большая часть сетевых атак блокируется автоматически установленными средствами защиты информации (межсетевые экраны, средства доверенной загрузки, сетевые маршрутизаторы, антивирусные средства и т.п.).

3.2. К атакам, требующим вмешательства персонала для их блокировки или снижения тяжести последствий относятся атаки типа DoS.

3.2.2. В случае выявления атаки системный администратор выполняет следующие действия:

  • осуществляет ручное переключение маршрутизатора на резервный канал и обратно с целью выявления менее загруженного канала (канала с более широкой пропускной способностью);
  • выявляет диапазон IP – адресов, с которых осуществляется атака;
  • отправляет провайдеру заявку на блокировку IP адресов из указанного диапазона.

3.3. DoS атака, как правило, используется для маскировки успешно проведенной атаки на ресурсы клиента с целью затруднить ее обнаружение. Поэтому при выявлении DoS атаки необходимо провести анализ последних транзакций с целью выявления необычных операций, осуществить (при возможности) их блокировку, связаться с клиентами по альтернативному каналу для подтверждения проведенных транзакций.

3.4. В случае получения от клиента информации о несанкционированных действиях осуществляется фиксация всех имеющихся доказательств, проводится внутреннее расследование и подается заявление в правоохранительные органы.


Скачать ZIP файл (24151)

Весной на продажу выставили ноутбук Samsung NC10-14GB, выпущенный в 2008 году, с установленной на нем Windows XP SP3. Однако интерес вызывал не сам компьютер, а то, что у него внутри — шесть вирусов: ILOVEYOU, MyDoom, SoBig, WannaCry, DarkTequila и BlackEnergy, которые нанесли прямой и косвенный ущерб почти на $100 млрд.

Содержание



ILOVEYOU

ILOVEYOU начал свой путь с Филиппин, вирус рассылал свои копии по адресным книгам, поэтому единственный пользователь с обширной базой адресатов заражал огромное количество машин.


Предполагается, что авторы вируса, Онел Де Гузман и Реонэл Рамонес с Филиппин, которые якобы хотели проверить гипотезы дипломной работы, не ожидали случившейся бури. Позже молодых людей задержали (помог анализ кода оригинальной версии ILOVEYOU), но после расследования отпустили.


Вирус использовал уязвимость в операционной системе Windows и программе Outlook в частности, которая по умолчанию разрешала обработку скриптов. Причиной эпидемии называют то, что разработчики из MS в то время не считали скриптовые языки угрозой, поэтому эффективной защиты от нее не предусмотрели. Кроме того, авторы ILOVEYOU намеренно или по незнанию выпустили в мир не только инструмент для уничтожения — они предоставили конструктор, который можно изменять под свои нужды. Это привело к появлению десятков модификаций вредоноса.

Как следует из рассказов представителей компаний, которые занимались обеспечением информационной безопасности, вокруг творилась истерика, телефоны звонили безостановочно. Распространению вируса способствовала социальная инженерия: модифицированные его версии поступали от имени друзей, предлагающих встретиться, письма якобы содержали информацию о том, как получить подарок, предлагали почитать анекдоты и так далее. Знакомая классика.


Все было так плохо, что некоторые крупные военные ведомства (тот же Пентагон) и компании были вынуждены полностью остановить почтовые сервисы. Позже источники называли разные цифры, отражающие количество зараженных компьютеров, — от сотен тысяч до десятков миллионов.

Что делал ILOVEYOU? Червь, получив доступ к системе после своего запуска (куда уж без участия пользователя), всего-то изменял и уничтожал файлы. А бэкапов тогда практически никто не делал.

Sobig

Вирус Sobig впервые заметили в 2002 году. Считается, что он заразил миллионы компьютеров по всему миру, действуя вначале под другим названием. По некоторым данным, экономический ущерб от его действий превысил $35 млрд, однако, как и в остальных случаях, подсчеты носят приблизительный и отчасти гипотетический характер.


Ну а дальше дело за вложениями с двойными (например, .mpeg.pif) или обычными расширениями (просто .pif или .scr) — пользователь сам инфицировал систему.


Microsoft пыталась бороться с вирусом, выпустив патч, позволяющий блокировать некоторые типы файлов, но .zip среди них не было, чем и воспользовались хакеры. Потом софтверная корпорация предложила награду в четверть миллиона долларов за голову автора (не за голову, за имя, конечно), но его так и не нашли. По одной из гипотез, автором червя является программист Руслан Ибрагимов, но он с этим не согласен.

Mydoom

Mydoom, который появился в 2004 году, побил рекорды ILOVEYOU и Sobig по скорости распространения. А также рекорд Sobig по нанесенному экономическому ущербу — якобы более $38 млрд.


По данным Symantec, в ней было реализовано два триггера. Один был ответственным за организацию DoS-атак начиная с 1 февраля 2004 года, второй останавливал распространение вируса 12 февраля того же года, но бэкдоры оставались активными. Правда, это касалось одной из версий, последующие имели более поздние сроки запуска и отключения. Так что никаких совестливых хакеров.


Основной целью вируса, вероятно, была организация DoS-атак, а также рассылка нежелательной почты. Побочным эффектом стало повсеместное снижение скорости доступа в интернет, рост объемов спама, ограничение доступа к некоторым ресурсам и блокировка работы антивирусного ПО.

Аннотация

Последние несколько лет на рынке информационной безопасности остро встал вопрос защиты от автоматизированных направленных атак, однако в общем понимании направленная атака в первое время представлялась как результат продолжительной и профессиональной работы организованной группой киберпреступников с целью получения дорогостоящих критичных данных. В настоящее время на фоне развития технологий, популяризации open-source форумов (напр. Github, Reddit) и Darknet, предоставляющих исходные коды вредоносного ПО и пошагово описывающих действия по его модификации (для невозможности его детектирования сигнатурным анализом) и заражению хостов, реализация кибератак значительно упростилась. Для реализации успешной атаки, сопровождающейся пагубными последствиями для владельцев автоматизированных и информационных систем, достаточно неквалифицированного пользователя и энтузиазма в разборе предоставленного в сети Интернет / Darknet материала.

С развитием Ransomware появляются и средства противодействия им. В первую очередь это открытый проект No more Ransom! (www.nomoreransom.org), предоставляющий жертвам атак средства дешифрования данных (в случае вскрытия ключа шифрования), во вторую – специализированные open-source средства защиты от вирусов-шифровальщиков. Но и они либо анализируют поведение ПО по сигнатурам и не способны обнаружить неизвестный вирус, либо обеспечивают блокировку вредоносного ПО после его воздействия на систему (шифрования части данных). Специализированные Open-source решения применимы интернет-пользователями на личных / домашних устройствах, крупным организациям, обрабатывающим большие объемы информации, в том числе критичной, необходимо обеспечивать комплексную проактивную защиту от направленных атак.

Проактивная защита от направленных атак и Ransomware

Рассмотрим возможные векторы доступа к защищаемой информации, находящейся на сервере или автоматизированном рабочем месте пользователя:

  • Воздействие на периметр локальной вычислительной сети из интернета возможно через:
  • корпоративную электронную почту;
  • веб-трафик, в том числе веб-почту;
  • периметровый маршрутизатор / межсетевой экран;
  • сторонние (некорпоративные) шлюзы доступа к интернету (модемы, смартфоны и т. д.);
  • системы защищенного удаленного доступа.
  • Воздействие на серверы, рабочие места пользователей по сети:
  • загрузка вредоносных программ на конечные точки / серверы по запросу от них же;
  • использование недокументированных возможностей (уязвимостей) системного/прикладного ПО;
  • загрузка вредоносов по шифрованному VPN-каналу, неконтролируемому службами ИТ и ИБ;
  • подключение к локальной сети нелегитимных устройств.
  • Прямое воздействие на информацию на серверах, рабочих местах пользователей:
  • подключение внешних носителей информации с вредоносом;
  • разработка вредоносных программ прямо на конечной точке / сервере.

Для уменьшения вероятности реализации угрозы для каждого типа доступа к защищаемой информации необходимо обеспечивать выполнение комплекса организационно-технических мер по защите информации, перечень которых отражен на рисунке (см. Рисунок 1)



Рисунок 1. Проактивные меры защиты от направленных атак и Ransomware

К основным организационным мерам проактивной защиты от направленных атак и Ransomware относятся:

  • Повышение осведомленности сотрудников в области ИБ.
    Необходимо регулярно проводить обучение сотрудников и информировать их о возможных угрозах ИБ. Минимальной и необходимой мерой является формирование принципов работы с файлами и почтой:
    o не открывать файлы с двойным расширением: настроить для пользователей отображение расширений, чтобы идентифицировать вредоносные файлы с двойными расширениями (например, 1СRecord.xlsx.scr);
    o не включать макросы в недоверенных документах Microsoft Office;
    o проверять адреса отправителей почтовых сообщений;
    o не открывать ссылки на веб-страницы, почтовые вложения от неизвестных отправителей.
  • Оценка эффективности защиты как внутри организации, так и с привлечением внешних специалистов.
    Оценивать эффективность обучения персонала необходимо при помощи моделирования атак, как внутренних, так и с участием внешних специалистов — проводить тесты на проникновение, в т. ч. с использованием метода социальной инженерии.
  • Регулярное обновление системного ПО (Patch Management).
    Для предотвращения атак вредоносного ПО на целевые системы через известные уязвимости необходимо обеспечить своевременное тестирование и установку обновлений системного и прикладного ПО с учетом приоритизации по степени критичности обновлений.
  • Систематизация резервного копирования данных.
    Необходимо регулярно выполнять резервное копирование критически важных данных серверов информационных систем, систем хранения данных, рабочих мест пользователей (если предполагается хранение критичной информации). Резервные копии должны храниться на ленточных библиотеках системы хранения данных, на отчуждаемых носителях информации (при условии, что носитель информации не подключен постоянно к рабочей станции или серверу), а также в облачных системах резервирования данных, хранилищах.

Технические мероприятия проактивной защиты от направленных атак и Ransomware предпринимаются на уровне сети и на уровне хоста.

Дополнительно к вышеперечисленным мерам предотвратить направленную атаку в корпоративной сети поможет следующее:

  • Обеспечение регулярного анализа защищенности ИТ-инфраструктуры — сканирование узлов сети для поиска известных уязвимостей в системном и прикладном ПО. Эта мера обеспечивает своевременное обнаружение уязвимостей, позволяет их устранить до момента их использования злоумышленниками. Также система анализа защищенности решает задачи по контролю сетевых устройств и устройств, подключенных к рабочим станциям пользователей (например, 4G-модем).
  • Сбор и корреляция событий позволяет комплексно подойти к обнаружению вымогателей в сети на основе SIEM-систем, поскольку такой метод обеспечивает целостную картину ИТ-инфраструктуры компании. Эффективность SIEM заключается в обработке событий, которые отправляются с различных компонентов инфраструктуры, в том числе ИБ, на основе правил корреляции, что позволяет оперативно выявить потенциальные инциденты, связанные с распространением вируса-вымогателя.

Приоритезация мер защиты от вирусов-вымогателей

Надежная комплексная защита от направленных атак обеспечивается комплексом организационно-технических мер, которые ранжируются в следующие группы:

  • Базовый набор мер, необходимый для применения всем организациям для защиты от направленных атак и вредоносов-вымогателей.
  • Расширенный набор мер, применимый для средних и крупных организаций с высокой стоимостью обработки информации.
  • Продвинутый набор мер, применимый для средних и крупных организаций с продвинутой ИТ- и ИБ-инфраструктурой и высокой стоимостью обрабатываемой информации.



Рисунок 2. Приоритизация мер защиты от трояна-вымогателя

Угроза заражения вирусом-вымогателем актуальна и для конечных пользователей Интернет, для которых также применимы отдельные меры по предотвращению заражения:

  • своевременная установка обновлений системного ПО;
  • использование антивирусов;
  • своевременное обновление баз сигнатур антивирусов;
  • использование доступных в свободном доступе средств защиты от вредоносных программ, шифрующих данные на компьютере: RansomFree, CryptoDrop, AntiRansomware tool for business, Cryptostalker и др. Установка средств защиты данного класса применима, если на компьютере хранятся критичные незарезервированные данные и не установлены надежные средства антивирусной защиты.

Меры защиты для мобильных устройств:

  • Для корпоративного сектора:
    o использование систем класса Mobile Device Management (MDM), обеспечивающих контроль установки обновлений системного ПО, установки приложений, контроль наличия прав суперпользователя;
    o для защиты корпоративных данных на мобильных устройствах пользователя — системы класса Mobile Information Management (MIM), обеспечивающих хранение корпоративных данных в зашифрованном контейнере, изолированном от операционной системы мобильного устройства;
    o использование систем класса Mobile Threat Prevention, обеспечивающих контроль разрешений, предоставленных приложениям, поведенческий анализ мобильных приложений.
  • Для конечных пользователей:
    o использование официальных магазинов для установки приложений;
    o своевременное обновление системного ПО;
    o исключение перехода по недоверенным ресурсам, установки недоверенных приложений и сервисов.

Выводы

Простота реализации и низкая стоимость затрат организации кибератак (Ransomware, DDoS, атаки на веб-приложения и пр.) приводит к увеличению числа киберпреступников при одновременном снижении среднего уровня технической осведомленности атакующего. В связи с этим резко увеличивается вероятность реализации угроз безопасности информации в корпоративном секторе и потребность в обеспечении комплексной защиты.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.