Посев туберкулеза на жидких средах

Туберкулез: оценка и учет результатов посева диагностического материала. Некоторые штаммы и виды микобактерий растут медленно, рост может появляться даже к 90-му дню. Число таких культур невелико, но это заставляет выдерживать посевы в термостате в течение 2,5-3 мес.

Вирулентные культуры микобактерий туберкулеза обычно растут на плотных яичных средах в виде R-форм колоний различной величины и вида. Колонии сухие, морщинистые, цвета слоновой кости, слегка пигментированные ( рис. 13-4 ). На других средах колонии микобактерий туберкулеза могут быть более влажными. После курса химиотерапии или в процессе лечения могут выделяться гладкие колонии с влажным ростом ( S-формы колонии микобактерий ).

При выделении культур используют комплекс специальных исследований, позволяющих отличить микобактерии туберкулеза от нетуберкулезных микобактерий и кислотоустойчивых сапрофитов (см. " Дифференциация микобактерий ").

Положительный ответ дают после обязательного микроскопического исследования окрашенного по Цилю-Нельсену мазка из выросших колоний. В случае роста микобактерий в мазках обнаруживают ярко-красные палочки, лежащие одиночно или группами, образующие скопления в виде войлока или кос. В молодых культурах, особенно выделенных от длительно леченных химиопрепаратами больных, микобактерии отличаются выраженным полиморфизмом, вплоть до наличия наряду с палочковидными формами коротких, почти кокковидных или же удлиненных вариантов, напоминающих мицелий грибов.

Интенсивность роста микобактерий обозначают по следующей схеме:

(+) - 1-20 КОЕ в пробирке (скудное бактериовыделение);

(++) - 20-100 КОЕ в пробирке (умеренное бактериовыделение);

(+++) - более 100 КОЕ в пробирке (обильное бактериовыделение).

При лабораторной диагностике туберкулеза недостаточно дать ответ, констатирующий, обнаружены ли или нет тем или иным методом микобактерии. Необходимо иметь детальное представление об объеме и характере микобактериальной популяции, ее составе и свойствах. Именно эти данные позволяют правильно интерпретировать состояние процесса, планировать тактику и своевременно корригировать лечение.

В последние годы для ускорения роста микобактерий предложены питательные среды на агаровой основе с различными ростовыми добавками и применением специальной газовой смеси. Для получения роста микобактерий на этих средах при культивировании создают атмосферу с повышенным содержанием углекислого газа (4-7%). С этой целью используют специальные СO2-инкубаторы. Однако наибольшее развитие получили автоматизированные системы культивирования микобактерий: MGIT-BACTEC-960 и MB/Bact.

Одна из таких систем - система MGIT (mycobacteria growth indicating tube), которая относится к разработкам высоких технологий и предназначена для ускоренной бактериологической диагностики туберкулеза и определения чувствительности микобактерий к препаратам первого ряда и некоторым препаратам второго ряда. MGIT ориентирована на использование ее в составе прибора ВАСТЕС-960. Культивируют микроорганизмы в специальных пробирках с жидкой питательной средой на основе модифицированной среды Middlebrook-7Н9. Для стимуляции роста микобактерий и подавления роста посторонней микрофлоры используются добавки роста MGIT Growth Supplement и смесь антибактериальных препаратов PANTA.

Регистрацию роста микроорганизмов осуществляют оптически. В ее основе лежит флюоресценция, возникающая при потреблении кислорода микобактериями в процессе роста. Кислородзависимый флюорохромный краситель содержится на дне специальной пробирки и покрыт слоем силикона. Размножение микобактерий приводит к уменьшению количества кислорода в пробирке и снижению его концентрации, что вызывает усиление флюоресценции, которая становится видимой при облучении и автоматически регистрируется фотодатчиками, встроенными в прибор ВАСТЕС. Интенсивность свечения регистрируют в единицах роста (GU - growth units). Данные роста заносятся в компьютер, где их можно сохранить ( рис. 13-5 ). Компьютерный анализ кривых роста может дать информацию о наличии различных пулов микобактерий, в том числе нетуберкулезных, а также помогает оценить ростовые свойства микобактерий.

В результате внедрения таких систем время появления роста микобактерий значительно сократилось, составляя в среднем 11 дней на ВАСТЕС-960 и 19 дней на MB/Bact против 33 дней на стандартной плотной питательной среде. Необходимо отметить, что эти системы требуют высокой квалификации персонала. Посев материала на жидкие среды обязательно сопровождают посевом на среду Левенштейна-Йенсена, играющую роль дублера в тех случаях, когда на других средах микобактерии туберкулеза не дают роста.

Патогенные микобактерии - Ф. К. Черкес

Глава 33. Возбудители туберкулеза

Представители семейства микобактерий Mycobacteriaceae имеют вид тонких, иногда ветвистых палочек, чем напоминают гриб. Медленный рост на питательных средах также сближает их с грибами. Эти особенности объясняют название семейства, рода - Mycobacterium.

Микобактерий кислото-щелоче- и спиртоустойчивы, что обусловливается наличием в оболочках их клеток жировосковых веществ.

Род микобактерий включает патогенных и непатогенных представителей. Патогенными для человека являются возбудители туберкулеза и возбудитель лепры.

Туберкулез широко распространен среди животных, птиц, грызунов.

Существуют несколько видов туберкулезных палочек:

1. Человеческий - Mycobacterium tuberculosis

2. Бычий - Mycobacterium bovis

3. Птичий - Mycobacterium avium

4. Мышиный - Mycobacterium murium

5. Встречаются микобактерий, вызывающие заболевания у холоднокровных. К ним относится особая группа атипичных микобактерий.

В настоящее время атипичные микобактерий приобретают особое значение. Их делят по ряду признаков на 4 группы: I, II, III, IV (по Раньону). Они отличаются от микобактерий туберкулеза меньшей требовательностью к питательным средам. Между собой они различаются по отношению к питательным средам, скорости роста, по способности образовывать пигмент, а также по каталазной и пероксидазной активности. Вызывают заболевания у человека представители групп I и III.

Морфология. Возбудители туберкулеза были открыты р. Кохом в 1882 г. Это тонкие палочки величиной 1,5-4 × 0,3-0,5 мкм. Они очень полиморфны: встречаются прямые, изогнутые, колбовидные. Как результат изменчивости бактерий, имеются кислотоподатливые формы и очень мелкие, так называемые зерна Муха. Разнообразие форм нередко зависит от состава среды, воздействия на них антибиотиков и химиотерапевтических средств. Бактерии туберкулеза неподвижны, не имеют спор и капсул. Грамоположительны, однако они плохо воспринимают анилиновые краски. Хорошо окрашиваются в красный цвет по методу Циля- Нильсена (см. рис. 4), где используются концентрированные краски и протравливание.

Культивирование. Возбудители туберкулеза - аэробы. Растут при температуре 37-38° С и рН среды 5,8-7,0, Отличительными культуральными особенностями туберкулезной палочки являются медленный рост и требовательность к питательным средам. Первично они растут только на специальных средах: среде Петраньяни, Петрова, Левенштейна - Йенсена. Их можно выращивать на глицериновом бульоне, глицериновом агаре, глицериновом картофеле. Глицерин стимулирует рост микобактерий. М. bovis не нуждаются в глицерине. Наибольшее распространение получила среда Левенштейна - Йенсена, которая рекомендована ВОЗ в качестве стандартной среды для выращивания туберкулезных палочек. В настоящее время пользуются также средой Финна II, которая отличается от среды Левенштейна - Йенсена тем, что вместо аспарагина в ней используется глутамин натрия. На этой среде микобактерий туберкулезарастут несколько быстрее, чем на среде Левенштейна - Йенсена, и процент выделения культур выше. Туберкулезные палочки можно культивировать и на синтетических средах, например среде Сотона.

Микобактерий туберкулеза встречаются в R- и S-форме. Более вирулентной является R-форма (М. bovis чаще встречается в R-форме). На плотных питательных средах возбудители туберкулеза образуют сухие морщинистые колонии кремового цвета с чуть приподнятым Центром и изрезанными краями (см. рис. 26). В жидких питательных средах микобактерий туберкулеза вырастают на 10-15-й день в виде пленки, которая постепенно утолщается, становится грубой, морщинистой, ломкой и в силу тяжести иногда падает на дно. Бульон под пленкой остается прозрачным.

Ферментативные свойства. Возбудители туберкулеза биохимически мало активны. У них обнаружен протеолитический фермент, который в определенных условиях (кислая и щелочная среда) расщепляет белок. Они расщепляют также некоторые углеводы, образуют уреазу. Но свойства эти непостоянны. Поэтому изучение ферментов не имеет диагностического значения.

Токсинообразование. Возбудители туберкулеза образуют эндотоксин - это белковое вещество впервые выделил Р. Кох (1890) и назвал его туберкулином. "Старый" туберкулин - это культуральная жидкость, полученная при росте культуры в глицериновом бульоне и выпаренная при 70° С до 1 /10 своего первоначального объема. "Новый" туберкулин - очищенный белковый дериват туберкулина.

Туберкулин обладает свойствами аллергена. Он не оказывает токсического действия на здоровый организм. Его действие проявляется только в зараженном организме. Поэтому введение туберкулина используют с диагностической целью, в постановках аллергических проб (Пирке или Манту). Для этой цели туберкулин готовят из бычьего типа микобактерий туберкулеза.

Вирулентные штаммы возбудителей туберкулеза содержат особый липид корд-фактор, который способствует склеиванию микобактерий и росту их в виде кос и тяжей.

Антигенная структура. Микобактерий туберкулеза содержат антиген, в который входят белковые, липоидные и полисахаридные факторы. Этот антиген вызывает в организме выработку антител (агглютининов, преципитинов, комплементсвязывающих веществ и др.). Однако эти антитела обнаруживаются в малых концентрациях, поэтому практически с целью диагностики мало используются.

Устойчивость к факторам окружающей среды. Микобактерий туберкулеза самые устойчивые из неспороносных форм бактерий (устойчивость обусловливается наличием в их оболочке липидов). Температуру 100° С они переносят в течение 5 мин. УФ-лучи вызывают их гибель только через несколько часов.

В высохшей мокроте они живут до 10 мес. При низких температурах микобактерий туберкулеза длительно сохраняются.

Дезинфицирующие растворы: сулема (1:1000), карболовая кислота (5%) губят их только через сутки. Наиболее чувствительны они к хлорамину и хлорной извести.

Восприимчивость животных. К М. tuberculosis человек очень чувствителен, животные и птицы малочувствительны. Из экспериментальных животных к нему высокочувствительны морские свинки, у которых инфекция протекает генерализованно и заканчивается обычно гибелью животного.

К M. bovis чувствительны крупный и мелкий домашний скот и домашние животные (человек малочувствителен, но дети могут заражаться при использовании молока больных животных).

Из экспериментальных животных наиболее чувствительны кролики, у которых инфекция протекает генерализованно. М. avium вызывает заболевание у птиц: кур, голубей, фазанов и т. д. Однако могут болеть и некоторые животные (человек редко заражается).

Из экспериментальных животных чувствительны кролики. Инфекция протекает у них остро.

Мышиный вид патогенен главным образом для полевок. У кроликов и морских свинок заболевание протекает в хронической форме.

Источники инфекции. Человек. Реже животные.

Пути передачи. Наиболее частые пути передачи - воздушно-капельный и воздушно-пылевой; реже пищевой. Возможно внутриутробное инфицирование через плаценту.

Заболевания у человека и патогенез. Заболевание туберкулезом характеризуется многообразием клинических форм. Различают легочную (наиболее часто встречающуюся) и внелегочные формы: туберкулез желудка и кишечника, почек, мозговых оболочек, костей и других органов.

Каждая из этих форм может закончиться генерализацией процесса. При воздушно-капельном и воздушно-пылевом заражении первичный очаг возникает в легком. В пораженном органе образуется бугорок - tubercul. Бугорок представляет собой скопление лейкоцитов и гигантских клеток, внутри которых находятся микобактерий туберкулеза. При хорошей сопротивляемости организма соединительная ткань окружает бугорок, он обызвествляется и бактерии, оставаясь жизнеспособными, не выходят за пределы бугорка. Таков "очаг Гона" - обызвествленный, небольшой очаг на месте первичного внедрения туберкулезной палочки (закрытый процесс).

При закрытом процессе палочки туберкулеза не выделяются с мокротой, мочой и др.

Таким образом, даже при доброкачественном течении процесса организм не освобождается от возбудителей туберкулеза. Считают, что 80% людей инфицированы туберкулезными бактериями. Однако клинически они здоровы. Когда организм попадает в неблагоприятные условия, защитные функции его снижаются, бугорок подвергается некрозу, бактерии высвобождаются и вовлекают в процесс новые участки, наступает обострение, образуются каверны - открытый процесс. Иногда может быть генерализация процесса, которая приводит организм к гибели. Чаще туберкулез протекает в хронической форме (закрытый процесс). Большое значение при обострении имеют условия труда и быта.

Иммунитет. Человек обладает определенной резистентностью, т. е. при заражении не всегда возникает заболевание, а образуется инфекционный (нестерильный) иммунитет, который обусловливается комплексом защитных факторов: гуморальных, клеточных, а также резистентностью органов и тканей.

Профилактика. Ранняя диагностика, изоляция и т. д. Для специфической профилактики используется живая вакцина БЦЖ (BCG), полученная французскими учеными Кальметтом и Гереном. Эту вакцину вводят новорожденным однократно, внутрикожно в наружную поверхность плеча. Ревакцинацию проводят через 7-12 лет, а затем через каждые 5-6 лет до 30 лет.

Лечение. Антибактериальные препараты: стрептомицин, рифампицин, ПАСК, фтивазид и др.

1. Кем и когда был открыт возбудитель туберкулеза?

2. На какие типы делится туберкулезная палочка? Какой тип патогенен для человека?

3. Что обусловливает устойчивость микобактерий туберкулеза?

4. Каким методом окрашивают мазки для обнаружения туберкулезных микобактерий?

5. На какие формы диссоциируют микобактерий туберкулеза и какая форма является патогенной?

Цель исследования: выявление возбудителя.

1. Мокрота (туберкулез легких и бронхов).

2. Экссудат из плевральной полости (туберкулез легких, плевры).

3. Асцитическая жидкость и кал (кишечная форма туберкулеза).

4. Моча (туберкулез почек).

5. Спинномозговая жидкость (туберкулезный менингит).

6. Кровь (генерализация процесса).



Способы сбора материала

Примечание. Баночки для сбора материала должны быть с завинчивающимися пробками. Посуду для сбора материала стерилизуют в автоклаве при 120° С в течение 20 мин или кипячением в течение 1 ч.



Ход исследования

1. На каких питательных средах выращивают микобактерии туберкулеза и какова длительность их роста?

2. Чем и для чего обрабатывают мокроту до посева ее на питательные среды?

3. Опишите рост туберкулезной палочки на плотной и жидкой питательных средах.

4. Какое животное является наиболее чувствительным к человеческому типу туберкулезной палочки?

Среда Левенштейна - Йенсена: солевой раствор; однозамещенный фосфат калия - 2,4 г; магния сульфат - 0,24 г; магния цитрат 10,6 г; аспарагин - 3,6 г; глицерин - 12 мл; картофельная мука - 5 г; вода дистиллированная - 600 мл.

Реактивы растворяют в указанной последовательности при слабом подогреве и стерилизуют 2 ч текучим паром. Солевая основа может быть приготовлена с запасом на 3-4 нед.

Яичная масса. 24-27 (в зависимости от величины) свежих диетических яиц моют проточной теплой водой, щеткой с мылом, погружают на 30 мин в 70% спирт, затем над спиртовкой в боксе разбивают стерильным пинцетом в колбу с бусами, хорошо размешивают и к 1 л яичной массы добавляют 600 мл солевого раствора. Смесь фильтруют через марлевый фильтр, добавляют 20 мл стерильного 2% раствора малахитового зеленого и разливают в пробирки по 5 мл. Свертывание производят при 85° С в течение 45 мин.

Среда Финна II. Солевая основа: магния сульфат - 0,5 г; натрия цитрат - 1 г; квасцы железоаммиачные - 0,05 г; калия фосфат однозамещенный - 20 г; аммония цитрат однозамещенный - 20 г; натрия глутамат однозамещенный - 5 г; глицерин - 20 мл; вода дистиллированная - до 1 л.

Ингредиенты растворяют в указанном порядке в теплой дистиллированной воде. Устанавливают рН 6,3-6,5. Стерилизуют при 1 атм 20 мин.

Яичная среда. 12 яиц моют щеткой с мылом, обрабатывают спиртом. Разбивают стерильным пинцетом и выливают в стерильную колбу с бусами, которую после добавления каждого яйца встряхивают до образования однородной массы. Добавляют 10 мл 20% водного раствора малахитового зеленого и 300 мл солевого раствора. Фильтруют через марлевый фильтр и свертывают при температуре 85° С в течение 30 мин.

Синтетическая среда Сотона. К 200 мл дистиллированной воды добавляют 4 г аспарагина, 0,5 г цитрата железа, 2 г лимонной кислоты, 0,5 г сульфата магния, 0,5 г основного фосфата калия, 60 г глицерина, 800 мл дистиллированной воды.

Культуральные методы диагностики (методы выращивания МБТ путем посева диагностического материала на питательные среды с последующей идентификацией выросших микроорганизмов) являются основными методами выделения МВТ. Их специфичность превышает специфичность микроскопических методов, а предел обнаружения значительно выше: наличие нескольких сотен и даже десятков жизнеспособных микобактерий (МБ) в 1 мл исследуемого материала.

Диагностическая чувствительность методов культивирования МБТ достигает 70-80 % среди впервые выявленных больных туберкулезом легких.

Среди впервые выявленных больных туберкулезом легких с бактериовыделением с помощью методов культивирования МБТ удается выявить на 10-30% больше числа случаев заболевания по сравнению с методами микроскопии. Методы культивирования МБТ позволяют выделить культуру возбудителя, необходимую для определения его видовой принадлежности и определения спектра и степени лекарственной чувствительности.

Видовая идентификация выделенной культуры микроорганизмов с помощью комплекса современных молекулярных методов позволяет сразу же дифференцировать МБТ от НТМБ и неспецифической микрофлоры.

Медленный рост МБТ требует значительного времени ожидания результатов при данных видах исследований. В среднем, при посеве диагностического материала от впервые выявленных больных для получения роста МБТ на плотных питательных средах требуется 21-36 дней, на жидких питательных средах - 12-22 дня.

2.1. Методы культивирования микобактерий туберкулеза на плотных питательных средах.

Получение роста микобактерий на плотных средах занимает более длительное время (до получения отрицательного результата - 12 недель), чем культивирование микобактерий на жидких средах (42-46 дней). Указанный метод позволяет получить культуру микобактерий для проведения её дальнейших исследований и может быть рекомендован для использования на этапах диагностики (наряду с культивированием на жидких средах) и контроля эффективности химиотерапии.

2.2. Культивирование микобактерий туберкулеза в жидкой питательной среде в автоматизированной системе учета роста микроорганизмов.

Культивирование микроорганизмов в жидкой питательной среде повышает выявление микобактерий примерно на 10% по сравнению с выявлением на плотных питательных средах. В настоящее время широко используются системы культивирования микроорганизмов с автоматической детекцией наличия роста микобактерий, которые позволяют значительно упростить процедуру считывания результатов культивирования.

2.3. Видовая идентификация культур микобактерий туберкулеза.

2.3.1. Дифференциация микобактерий по культуральным свойствам.

При посеве на плотные питательные среды на основании скорости роста, морфологии, окраски колоний и положительной кислотоустойчивой окраски микроорганизмов можно сделать предварительное заключение о принадлежности культуры либо к микобактериям туберкулезного комплекса, либо к нетуберкулезным микобактериям.

2.3.2. Идентификация микобактерий с помощью биохимических тестов.

Дифференциация микобактерий туберкулезного комплекса и нетуберкулезными видами микобактерий основана на их культуральных свойствах и способности к росту на дифференциально-диагностических средах. Наиболее часто применяемыми и общепринятыми тестами являются способность к росту на среде, содержащей 1000 мкг/мл натрия салициловокислого; к росту на среде, содержащей 500 мкг/мл паранитробензойной кислоты; к росту на среде, содержащей 5% хлорида натрия. Виды микобактерии туберкулезного комплекса не способны к росту на указанных питательных средах. Для дифференциации вида M.bovis от других видов туберкулезных микобактерий используют культуральный тест на способность к росту на среде, содержащей 2 мкг/мл гидразида тиофен-2 карбоксиловой кислоты (ТСН). Среди всех представителей этой группы только указанный вид не дает роста на этой питательной среде.

Для дифференциации видов микобактерий внутри рода применяют следующие основные биохимические исследования: тест на наличие способности продуцировать никотиновую кислоту (ниациновый тест); тест на наличие нитратредуктазной активности; тест на наличие термостабильной каталазы; тест на наличие пиразинамидазы и др.

Для контроля контаминации при культивировании на жидкой/плотной питательной среде проводят посев культур на чашки Петри с кровяным агаром. Наличие роста микроорганизмов через 24 - 72 часа инкубации при +37°С свидетельствует о контаминации материала посторонней микрофлорой.

3. Методы определения лекарственной чувствительности микобактерий туберкулеза

Для определения лекарственной чувствительности МБТ в качестве основных рекомендуется использовать непрямые фенотипические методы исследований, т.е. исследование культуры МБТ в присутствии противотуберкулезных препаратов (ПТП):

- метод абсолютных концентраций на плотной питательной среде Левенштейна-Йенсена;

- модифицированный метод пропорций в жидкой питательной среде в системе с автоматизированным учетом роста микроорганизмов;

- нитратредуктазный метод индикации роста МБТ на основе метода абсолютных концентраций на плотной питательной среде с использованием реактива Грисса;

- модифицированный метод определения минимальных ингибирующих концентраций в жидкой питательной среде.

На плотной питательной среде Левенштейна-Йенсена проводят определение ЛЧ МБТ методом абсолютных концентраций к ПТП первого ряда (стрептомицин, изониазид, рифампицин, этамбутол,) и к ПТП второго ряда (канамицин, капреомицин, циклосерин, офлоксацин, этионамид, аминосалициловая кислота, амикацин).

На жидких питательных средах проводят определение ЛЧ МБТ к ПТП первого ряда (изониазид, рифампицин, этамбутол, стрептомицин, пиразинамид) и к ПТП второго ряда (амикацин, канамицин, офлоксацин, левофлоксацин, моксифлоксацин, этионамид, протионамид, капреомицин, аминосалициловая кислота, линезолид).


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).



Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

В соответствии с современными программами ВОЗ, основой выявления туберкулёза за рубежом считают проведение микроскопии мазков мокроты, полученной от кашляющих больных, обратившихся к врачам общей практики; мазки окрашивают по Цилю-Нильсену. Эта методика входит в отечественный поликлинический и клинический минимум обследования пациента, выделяющего мокроту. В 1995 г. Минздравмедпром России в приказе № 8 "О развитии и совершенствовании деятельности лабораторной клинической микробиологии (бактериологии) лечебно-профилактических учреждений" подтвердил эту обязанность клинико-диагностических лабораторий. Обязательное бактериологическое исследование мокроты на М. tuberculosis должно быть организовано для нетранспортабельных больных, больных хроническими заболеваниями органов дыхания и мочевыводящей системы, а также для работников неблагополучных по туберкулёзу животноводческих хозяйств. Этот старейший метод полностью сохраняет свое значение вследствие доступности для практических клинико-диагностических лабораторий, низкой стоимости и быстроты выполнения.

При бактериоскопии мазка, окрашенного по Цилю-Нильсену, микобактерии туберкулеза могут быть обнаружены при наличии не менее 100 000 - 1 000 000 бактериальных клеток в 1 мл патологического материала (мокроты). Такое большое количество микобактерий встречается у больных с далеко зашедшими прогрессирующими формами заболевания (диссеминированными и фиброзно-кавернозными). У значительно большего числа больных количество выделяемых ими микобактерий ниже предела метода бактериоскопии, что и является большим минусом этого метода. Только при идеальном выполнении всех требуемых условий, указанных в Приказе № 109 МЗ РФ,-исследование не менее трех проб диагностического материала, правильный сбор мокроты, наличие современного бинокулярного микроскопа и высококачественных реактивов, просмотр до 300 полей зрения - возможно повышение чувствительности до 10000 микробных клеток.

Микобактерии туберкулёза имеют вид тонких, слегка изогнутых палочек различной длины с утолщениями на концах или посередине, располагаются группами и поодиночке (рисунок 1,а) Окрашенные по Цилю-Нильсену мазки микроскопируют с иммерсионной системой не менее 10 мин.

Люминесцентная микроскопия

Метод основан на проникновении в микробную клетку карболового производного флюоресцентного красителя (аурамина, родамина). При окраске флюоресцентным красителем аурамином-родамином микобактерии можно видеть при неиммерсионном 100-кратном увеличении. Более точен результат при окраске по Цилю-Нильсену карболфуксином и иммерсионной микроскопии при 1000-кратном увеличении. Именно окраска мазка по Цилю-Нильсену рекомендована при применении технологий DOTS. Микобактерии в этом случае выглядят светящимися желтыми палочками (рисунок 1, б). Метод имеет неоспоримые преимущества, так как позволяет при меньшем увеличении микроскопа просмотреть фактически весь мазок, так же этот метод экономически более эффективен, так как уменьшается время, затрачиваемое на просмотр мазков.

К недостаткам метода ЛМ следует отнести значительно более высокую стоимость люминесцентного микроскопа, при процедуре окрашивания- соблюдение и коррекция pH мазка, а также освобождение микобактерий в диагностическом материале (особенно в мокроте) от окружающей их слизи, которая препятствует проникновению флуоресцентного красителя в микробную клетку. Поэтому нецелесообразно использование ЛМ для нативной мокроты, но применять этот метод рекомендуется при исследовании мазков, приготовленных после центрифугирования из осадка материала, обработанного для культурального исследования и нейтрализованного после деконтаминации. Поэтому метод ЛМ следует применять в бактериологических лабораториях, где культуральное и микроскопическое исследование может быть произведено из одной и той же порции диагностического материала.

При гистологическом или цитологическом исследовании иногда можно обнаружить характерные для туберкулёза клетки, являющиеся результатом защитной реакции организма на внедрение туберкулёзной палочки. Наличие в цитограмме гигантских клеток Лангханса с несомненностью решает диагноз туберкулёза. Эти клетки имеют очень большие размеры (80 - 90 мкм и более в диаметре). Цитоплазма окрашена в серо-голубой цвет. По её периферии расположено в ряд большое количество ядер (до 20), расположенных в форме кольца (рисунок 1, в).

Другим признаком туберкулёза является присутствие в препарате так называемых эпителиоидных клеток, из которых и развиваются клетки Лангханса. Это происходит при увеличении количества ядер без разделения цитоплазмы, которая только увеличивается в размерах (рисунок 1, г).

Микроскопия позволяет быстро получить результат, но обладает низкой чувствительностью и специфичностью, невозможностью дифференциации кислотоустойчивых микобактерий.

Рисунок 1

Микобактерии туберкулеза
а - метод окраски по Цилю-Нельсену
б - метод люминисцентной микроскопии
в - клетки Лангхаса
г - эпителиоидные клетки

Наиболее распространенным методом выявления микобактерий туберкулеза в нашей стране является культуральный метод. Это "золотой стандарт" бактериологической диагностики туберкулеза, так как чувствительность метода существенно выше микроскопического и дает возможность получить чистую культуру микобактерий для её последующей идентификации и исследования лекарственной устойчивости. Этот метод дает положительные результаты при наличии в исследуемом материале от 20 до 100 жизнеспособных микробных клеток в 1 мл. Однако он трудоемок и длителен в связи с тем, что микобактерии туберкулеза растут очень медленно и их обнаружение может быть зарегистрировано только через 3 недели культивирования.

Исторически сложилось, что питательные среды на яичной основе (Левенштейна-Йенсена, Финна-2, Огавы, Аникина, "Новая", Попеску) получили наибольшее распространение среди плотных питательных сред, применяемых для выделения МБТ. Посев материала на среду Левенштайна-Йенсена проводят в бактериологической лаборатории. Рост первых колоний на классических средах отмечают через 4 - 8 недель. Однако появившиеся в последние годы агаровые среды Миддлбрука (7Н10, 7Н11) позволяют быстрее обнаружить рост микобактерий (от двух до четырех недель) и обеспечивают лучшие возможности для изучения морфологии колоний, чем на яичных средах. Недостатком агаризованных питательных сред является необходимость инкубации посевного материала в термостате с углекислым газом, поэтому агаризованные среды в России практически не применяются.

Следует отметить, что в связи с высокой избирательностью различных штаммов микобактерий и потребностью в полноценных белках до сих пор нет универсальной питательной среды, способной заменить все остальные. В Приказе № 109МЗ РФ для посева диагностического материала на МБТ рекомендуется использовать по одной пробирке международной питательной среды Левенштейна-Йенсена и Финна-2. Однако практика показывает, что кроме указанных сред целесообразно использовать и какую-либо из дополнительных, а посев на три пробирки питательной среды также повышает эффективность культуральной диагностики.

Для полноценной культуральной диагностики туберкулеза необходимо иметь соответствующие помещения и оборудование. Особенно важно наличие центрифуги и антиаэрозольной защитой и способностью обеспечить ускорение 3000g. А также шкафов биологической безопасности для предотвращения внутрилабораторного инфицирования.

Основным недостатком культуральной диагностики туберкулеза является длительность исследования - от трех недель до трех месяцев. Поэтому остаются актуальными дальнейшие исследования по разработке методов ускорения роста микобактерий.

Культуральная диагностика туберкулеза переживает в настоящее время принципиальные изменения, связанные с внедрением в практику полностью автоматизированных систем культивирования МБТ. Главное отличие этих методов - применение жидких питательных сред для культивирования с последующей радиометрической (BACTEC 460), колорометрической (Mb-Bact, Вас- tALERT) и люминесцентной детекцией роста (BACTEC MGIT 960). Рост МБТ на жидкой питательной среде в этих системах удается обнаружить уже через 1 - 2 недели в зависимости от их исходного количества в диагностическом материале. Частота выявления микобактерий так же несколько выше, чем на плотных питательных средах. Автоматизированные системы BACTEC с использованием соответствующих флаконов, содержащих различные противотуберкулезные препараты, позволяют сократить время исследования лекарственной устойчивости микобактерий до 10 - 14 суток.

Из перечисленных автоматизированных систем наиболее эффективна в настоящее время система BACTEC MGIT 960BD. Флаконы MGIT с жидкой питательной средой 7Н9 содержат в придонной части под силиконом флуоресцентный индикатор, "погашенный" высокими концентрациями кислорода. При наличии роста микобактерий в процессе поглощения кислорода индикатор начинает светиться, регистрация флуоресценции в сисиеме BACTEC MGIT производится автоматически. Использование флаконов MGIT возможно и "вручную", тогда регистрацию свечения производят с помощью трансиллюминатора на флаконах MGIT составляет 11 суток.

Основным недостатком BACTEC MGIT, как и других систем BACTEC, является высокая стоимость оборудования (до 100000 долларов США) и флаконов с питательной средой - посев одной пробы диагностического материала стоит до 400 рублей.

Так называемые дефектные по клеточной стенке L-формы микобактерий и других инфекционных патогенов являются результатом изменчивости и основным видом персистирования, то есть переживания в неблагоприятных условиях. Посев на L-формы особенно эффективен при внелегочном туберкулезе, поскольку вегетация МБТ в очагах ВЛТ при повышенном ацидозе и анаэробиозе приводит к снижению их жизнеспособности и ферментативной активности.

Диагноз не может быть поставлен только на основании выявления L-форм микобактерий, но их обнаружение, особенно при верификации методом ПЦР, является весомым аргументом в пользу туберкулезной природы заболевания. В очагах внелегочного туберкулеза наблюдается ранняя L-трансформация микобактерий, поэтому их обнаружение позволяет поставить диагноз на начальных стадиях заболевания.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.