Роль антигенов в инфекционном процессе и развитии иммунного ответа

Понятие и особенности свойств антигенов. Определение разнообразия белковых эпитопов. Сущность, предназначение иммуногенности и толерогенности клеток. Характеристика и специфика антигенреактивной клетки, роль и предназначение эффекторных Т-клеток.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 13.09.2016
Размер файла 17,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Выполнил: Куданов М

Проверила: Шуратова С.Г

Антигены- вещества различного происхождения, несущие признаки генетической чужеродности и вызывающие развитие иммунных реакций (гуморальных, клеточных, иммунологической толерантности, иммунологической памяти и др.).

Свойства антигенов, наряду с чужеродностью, определяет их иммуногенность- способность вызывать иммунный ответ и антигенность- способность (антигена) избирательно взаимодействовать со специфическими антителами или антиген- распознающими рецепторами лимфоцитов.

Антигенами могут быть белки, полисахариды и нуклеиновые кислоты в комбинации между собой или липидами.

Основными свойствами антигена являются: специфичность, чужеродность, иммуногенность или толерогенность.

Специфичность. Антигенная специфичность представляет собой уникальное биологическое явление, которое лежит в основе иммунологических взаимодействий в организме, а также лабораторных методов определения разных антигенов, серодиагностики, методов специфической профилактики и терапии инфекционных заболеваний.

Структура, обладающая индивидуальной антигенной специфичностью, называется антигенным детерминантом, или эпитопом. Последнее название отражает то, что антигенной активностью обладают только структуры лежащие на поверхности молекулы, а глубокие проявляют антигенность лишь при изменении конформации или разрушении молекулы. Разнообразие белковых эпитопов достигается за счет мозаики аминокислотных остатков, расположенных на глобулярной поверхности молекулы белка.

Эпитопы, определяющие антигенность белковой молекулы, состоят из 625 аминокислот и располагаются в разных частях молекулы, разделяясь неантигенными структурами. При этом эпитопы одной молекулы не обязательно должны иметь одинаковый состав и одинаковую специфичность. Количество одинаковых эпитопов на молекуле определяет число молекул антител, которые могут к ней присоединиться, т.е. валентность данного антигенного субстрата. Валентность антигенов возрастает с их молекулярной массой. Так, валентность яичного альбумина с молекулярной массой 45 000 равна 5, а валентность гемоцианина с мол. массой 6,5 млн. - 231. Эпитоп, отделенный от молекулы, может иметь только одну валентность и обладать свойствами гаптена, а вся молекула для данного эпитопагаптена играет роль носителя.

Поскольку эпитопы, определяющие антигенные свойства молекулы расположены на одних участках, а токсические свойства микробных токсинов определяют другие участки, могут быть приготовлены анатоксинымолекулы, лишенные токсических свойств, но сохранивших антигенные. Анатоксины служат основой вакцинных препаратов для создания антитоксического иммунитета.

Чужеродность. Антиген вызывает позитивный иммунный ответ (образование антител и активных лимфоцитов) только в тех случаях, когда он чужероден, т.е. обладает стектурами, отсутствующими в данном организме. К собственным антигенам организм толерантен. Только при изменениях, придающих антигену признаки чужеродности, он приобретает способность индуцировать позитивный иммунный ответ.

Строение антигенов отражает эволюционную близость обладающих ими организмов. Существуют общие антигены, свойственные представителям разных семейств, родов, видов. Имеются вариантные антигены, различные для особей одного и того же вида. Определение антигенного состава используется для классификации разных групп живых существ и выявления эволюционных связей между ними.

Иммуногенность и толерогенность - альтернативные свойства каждого антигенного субстрата. Для индукции иммунного ответа и толерантности необходимо воздействие антигена на лимфоцит, обладающий рецепторами для данного антигена - антигенреактивную клетку (АРК). Отличия состоят в том, что при индукции позитивной иммунной реакции АРК получают стимулы от цитокинов, обеспечивающие их пролиферацию и формирование клона эффекторных клеток. При индукции иммунологической толерантности АРК не подвергается дальнейшей стимуляции и либо погибает, либо лишается рецепторов к антигену.

· Формирование иммунологической толерантности Т и В-лимфоцитов к собственным антигенам, как уже отмечалось, происходит в организме постоянно и созревающие лимфоциты, обладающие рецепторами к аутоантигенам, гибнут в результате контакта с ними в тимусе или в костном мозге. Чужеродные антигены в иммунологически полноценном организме встречают преимущественные условия для иммуногенного действия и лишь в особых ситуациях проявляют толерогенные свойства. Это наблюдается:При действии антигена в условиях неспособности организма обеспечить стимуляцию клеток, вошедших в контакт с антигеном в случаях действия иммунодепрессивных факторов, физиологической недостаточности факторов, способствующих иммуногенезу (незрелость организма, беременность).

Толерогенными свойствами обладают также низкоиммуногенные антигенные препараты - деагрегированные белки, некоторые гаптены. Во всех этих случаях толерантность сохраняется, как правило, только в течение того времени пока в организме сохраняется и прояВ-ляет свое действие толероген. Как только созреют новые антигенреактивные клетки (АРК), не подвергшиеся толерогенной обработке, толерантность прекращается, несмотря на то, что в организме еще сохраняются ареактивные клетки.

Для характеристики иммунологической толерантности следует отметить, что чувствительность Т и В-лимфоцитов к индукции толерантности различна: Т-лимфоциты более чувствительны к индукции толерантности, чем В-лимфоциты, и сохраняются толерантными более длительное время. Поэтому в организме может возникнуть ситуация, когда Т-лимфоциты толерантны к данному антигену, а В-лимфоциты не толерантны. В этом случае иммунологическая толерантность на уровне организма сохраняется, так как для активации В-лимфоцитов необходим сигнал от Т-хелперов. Однако в некоторых случаях создаются условия для нарушения толерантности, так как на некоторые антигены В-лимфоциты реагируют без помощи Т-клеток.

Роль эффекторных Т-клеток

Для участия в адаптивном иммунном ответе нативные (примитивные) Т-клетки должны быть активированы т.е. индуцированы к пролиферации и последующей дифференцировке в клетки, способные к удалению патогенов. Такие клетки называют эффекторными Т-клетками. Их основным свойством является способность действовать немедленно или очень быстро после связывания с МНС-пептидным комплексом на клетке-мишени.

Генерация эффекторных клеток из примитивных Т-клеток идет несколько дней. В конце этого периода эффекторные Т-клетки покидают лимфоидные органы, возвращаются в кровеносное русло и могут мигрировать в места инфекций. Активация примитивных Т-клеток при первичной встрече с антигеном на поверхности профессиональных АРС называемая праймингом, требует распознавания ими чужеродных пептидных фрагментов, связанных с собственными МНС-молекулами. Кроме того, требуется одновременное поступление ко-стимулирующего сигнала от специализированных профессиональных АРС.

Таким образом, Т-клетки, которые встретили специфический антиген, представленный АРС, активируются, пролиферируют и дифференцируются в эффекторные клетки, а эффекторные Т-клетки оставляют лимфоузлы через эфферентные лимфатические сосуды и входят в циркуляцию.

Т-киллеры выполняют в иммунном ответе важную функцию лизиса клеток (участвуют в цитотоксических реакциях), несущих на своей поверхности антигены, к которым специфичны данные лимфоциты. Т-киллеры распознают клетки, на поверхности которых присутствуют чужеродные антигены для данного организма (опухолевые антигены, чужеродные антигены гистосовместимости, вирусоспецифические антигены на клетках, зараженных вирусом).

Т-хелперы: антиген эпитоп иммуногенность клетка

Т-супрессоры:

Размещено на Allbest.ru

Общая характеристика антигенов. Антигены бактерий и вирусов. Антигены организма человека и их взаимодействие с иммунокомпетентными клетками. Взаимодействия клеток в иммунном ответе. Защитная реакция организма от чужеродного биологического материала.

презентация [82,3 K], добавлен 12.05.2013

Общая характеристика B-лимфоцитов. Характеристика субпопуляций, рецепторы и маркеры В-лимфоцитов. Антигенраспознающие рецепторы B-клеток: общая характеристика. Субпопуляции В-лимфоцитов, распознание антигенов рецепторами иммуноглобулиновой природы.

реферат [495,4 K], добавлен 02.10.2014

Характеристика и формы антигенов, их специфические свойства. Антигенная активность и иммунологическая толерантность. Синтетические полипептиды как аналоги белковых антигенов. Оценка информационной "емкости" иммунной системы в филогенезе и онтогенезе.

реферат [3,8 M], добавлен 06.09.2009

Обзор механизмов лимфоидного аппарата адаптивного иммунитета. Система образования кининов. Рецепторы клеток врожденной иммунной системы. Характеристика сигналов и их реализации. Особенности взаимодействия плазменных белков, их участие в иммунных реакциях.

курсовая работа [2,2 M], добавлен 02.03.2013

Основные функции бокаловидных клеток как клеток эпителия слизистой оболочки кишечника и других органов позвоночных животных и человека. Форма клеток и особенности их локализации. Секрет бокаловидных клеток. Участие бокаловидных клеток в секреции слизи.

реферат [2,9 M], добавлен 23.12.2013

Основные разновидности живых клеток и особенности их строения. Общий план строения эукариотических и прокариотических клеток. Особенности строения растительной и грибной клеток. Сравнительная таблица строения клеток растений, животных, грибов и бактерий.

реферат [5,5 M], добавлен 01.12.2016

Сущность органоидов, классификация включений цитоплазмы по функциональному назначению. Отличительные особенности растительной и животной клеток, роль ядра в их функционировании. Основные органоиды клетки: комплекс Гольджи, митохондрии, лизосомы, пластиды.

презентация [6,8 M], добавлен 27.12.2011

Роль белков в сигнальных системах клеток, при иммунном ответе и в клеточном цикле. Виды белков в живых клетках: ферменты, транспортные, пищевые, запасные, сократительные, двигательные, структурные, защитные и регуляторные. Доменная структура белков.

презентация [578,7 K], добавлен 18.10.2014

Достижения в области изучения стволовых клеток. Виды стволовых клеток, особенности их функционирования. Эмбриональные и гемопоэтические стволовые клетки. Стволовые клетки взрослого организма. Биоэтика использования эмбриональных стволовых клеток.

презентация [908,9 K], добавлен 22.12.2012

Методика и задачи проведения урока биологии на тему: "Строение клеток", а также формы работы с учащимися. Сравнительная характеристика прокариотических и эукариотических клеток. Структура, назначение и функции основных органоидов клеток живых организмов.

конспект урока [34,4 K], добавлен 16.02.2010


Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.

[youtube.player]

Инфекция – сумма биологических реакций, которыми макроорганизм отвечает на внедрение микробного (инфекционного) агента, вызывающего нарушение постоянства внутренней среды (гомеостаза).

Аналогичные процессы, вызванные простейшими, называются инвазиями.

Сложный процесс взаимодействия между микроорганизмами и их продуктами, с одной стороны, клетками, тканями и органами человека и животных – с другой, характеризуется чрезвычайно широким разнообразием своего проявления. Патогенетические и клинические проявления этого взаимодействия между микроорганизмами и макроорганизмом обозначаются термином инфекционная болезнь (заболевание).

Особенности инфекционных болезней состоят в следующем:

  1. их этиологическим фактором является микробный агент;
  2. они передаются от больного к здоровому;
  3. оставляют после себя ту или иную степень невосприимчивости;
  4. характеризуются цикличностью течения;
  5. имеют ряд общих синдромов.

В соответствии с этими особенностями любое инфекционное заболевание имеет определенные клинические стадии (периоды) своего течения, выраженные в той или иной степени:

  • инкубационный период – период от момента проникновения инфекционного агента в организм человека до появления первых предвестников заболевания. Возбудитель в этот период обычно не выделяется в окружающую среду, и больной не представляет эпидемиологической опасности для окружающих;
  • продромальный период – проявление первых неспецифических симптомов заболевания, характерных для общей интоксикации макроорганизма продуктами жизнедеятельности микроорганизмов и возможным действием бактериальных эндотоксинов, освобождающихся при гибели возбудителя; они также не выделяются в окружающую среду;

Период разгара заболевания – проявление специфических симптомов заболевания. При наличии в этом периоде развития заболевания характерного симптомокомплекса клиницисты называют такое проявление заболевания манифестной инфекцией, а в тех случаях, когда заболевание в этот период протекает без выраженных симптомов, – бессимптомной инфекцией. Этот период развития инфекционного заболевания, как правило, сопровождается выделением возбудителя из организма, вследствие чего больной представляет эпидемиологическую опасность для окружающих; данные состояния характеризуются периодом исходов. В этот период возможны:

  • рецидив заболевания – возврат клинических проявлений болезни без повторного заражения за счет оставшихся в организме возбудителей;
  • суперинфекция – инфицирование макроорганизма тем же возбудителем до выздоровления. Если это происходит после выздоровления, то будет называться реинфекцией, так как возникает в результате нового заражения тем же возбудителем (как это часто бывает при гриппе, дизентерии, гонорее);
  • бактерионосительство, или, вернее, микробоносительство, – носительство возбудителя какого–либо инфекционного заболевания без клинических проявлений;
  • полное выздоровление (реконвалесценция) – в этот период возбудители также выделяются из организма человека в больших количествах, причем пути выделения зависят от локализации инфекционного процесса. Например, при респираторной инфекции – из носоглотки и ротовой полости со слюной и слизью; при кишечных инфекциях – с фекалиями и мочой, при гнойно–воспалительных заболеваниях – с гноем;
  • летальный исход. При этом необходимо помнить, что трупы инфекционных больных подлежат обязательной дезинфекции, так как представляют собой определенную эпидемиологическую опасность из–за высокого содержания в них микробного агента.
  • В учении об инфекции существует также понятие персистентности (инфицированности): микроорганизмы попадают в организм животного и могут существовать в нем, не проявляя себя достаточно долгое время.

    Это происходит очень часто с возбудителем туберкулеза.

    Отличие бактерионосительства от персистениии:

    • при носительстве животное выделяет возбудителя в окружающую среду и является опасным для окружающих;
    • при персистенции инфицированные животные в окружающую среду микроорганизм не выделяет, следовательно, не опасны для окружающих в эпидемиологическом отношении.

    – внешняя среда, в которой они взаимодействуют.

    Иммунный ответ – это сложная многокомпонентная, кооперативная реакция иммунной системы организма, индуцированная антигеном и направленная на его элиминацию. Явление иммунного ответа лежит в основе иммунитета.

    Иммунный ответ зависит от:

    1. антигена – свойства, состав, молекулярная масса, доза, кратность попадания, длительность контакта);
    2. состояния организма (иммунологическая реактивность);
    3. условий внешней среды.

    Первоначально термин антиген (от англ. Antibodi generator) применяли для обозначения любой молекулы, индуцирующей образование В–клетками специфических антител. Однако теперь этот термин имеет более широкий смысл, обозначая любую молекулу, которую могут специфически распознавать элементы системы приобретенного иммунитета, т.е. В–клетки или Т–клетки, либо и те и другие.

    Антиген – это инициатор и движущая сила всех реакций приобретенного иммунитета. Иммунная система возникла для распознавания и разрушения чужеродных агентов, а также устранения источника их образования – бактерий, инфицированных вирусом клеток и т.п. Когда антиген элиминирован, иммунный ответ прекращается.

    Антигены – вещества различного происхождения, несущие признаки генетической чужеродности и вызывающие развитие иммунных реакций (гуморальных, клеточных, состояние иммунной толерантности, индуцирование иммунной памяти).

    Свойства антигена определяются комплексом признаков: иммуногенность, антигенность, специфичность.

    Иммуногенность – способность антигена индуцировать в организме иммунный ответ.

    Антигенность – способность антигена взаимодействовать только с гомологичными антителами и лимфоцитами определенного клона.

    Специфичность – структурные особенности, отличающие один антиген от другого.

    Способность вызывать развитие иммунного ответа и определять его специфичность обладает фрагмент молекулы антигена – антигенная детерминанта (эпитоп), избирательно реагирующая с антигенраспознающими рецепторами и антителами. Молекула антигена может иметь несколько эпитопов, то есть быть поливалентной. Чем сложнее молекула антигена и чем больше у нее эпитопов, тем больше вероятность развития иммунной ответа.

    Иммуногены или полные антигены – это вещества, вызывающие полноценный иммунный ответ и обладающие свойствами: иммуногенностью, антигенностью и специфичностью. Иммуногенами являются биополимеры – белки, их комплексы с углеводами (гликопротеиды), а также сложные полисахариды, липополисахариды с высокой молекулярной массой. Чем дальше от человека в эволюционном отношении отстоят организмы, тем большую иммуногенность проявляют их белки.

    Гаптены – неполные антигены, относительно простые вещества, способные участвовать в иммунологических взаимодействиях, но не способные самостоятельно индуцировать иммунный ответ. Гаптены обладают свойствами антигенностью и специфичностью, но не обладают иммуногенностью.

    Гаптены после присоединения к крупным, обычно белковым молекулам (носителям), могут приобретать свойства полного антигена.

    Толерогены – антигены, способные подавлять иммунные реакции с развитием специфической неспособности отвечать на них.

    Антигены – химические вещества, свободные, либо входящие в состав клеток, способные индуцировать иммунный ответ организма.

    Полноценный антиген состоит из двух частей:

    • носитель (стабилизирующая часть) – 97 – 99% молекулы антигена; это, как правило, макромолекулы, инертные корпускулярные частицы;
    • детерминантная группа (эпитоп) – олигосахариды или олигопептиды, располагаются как правило на поверхности молекулы (эпи–); на одном носителе может быть несколько эпитопов, в связи с этим вводят понятие эпитопная плотность; детерминантная группа определяет специфичность антигена.

    • способны вызывать иммунный ответ;
    • способны к специфическому взаимодействию с различными молекулами и клетками (эритроцитами и т.д.).

    Если реализованы оба указанных свойства, то такой антиген называют полноценным, если реализовано только второе свойство, то такой антиген называют неполноценным или гаптеном.

    Гаптен может быть фиксирован на специальные носители – адьюванты. Механизм действия адьювантов:

    • создают депо антигенов;
    • укрупняют молекулу;
    • активируют лимфоидную ткань.

    Большинство возбудителей инфекционных заболеваний человека, их структуры и токсины – полноценные антигены, вызывающие развитие иммунных реакций.

    По расположению в бактериальной клетке выделяют антигены:

    Капсульный антиген – К Ag

    Жгутиковый антиген – H Ag

    Соматический антиген – O Ag

    О–Аг большинства бактерий представлены термостабильным липополисахаридно–полипептидным комплексом; у грамотрицательных бактерий О–Аг представляет эндотоксин.

    Н–Аг представлен термолабильным белком флагеллином.

    К–Аг большинства бактерий имеют полисахаридную природу. По чувствительности к темпратуре К–Аг подразделяются на А–, В– и L–антигены. Наиболее термостабильными являются А–Аг, выдерживающие кипячение более 2 часов. В–Аг выдерживают нагревание при температуре 60°С в течение часа, а L–Аг разрушаются при нагревании до 60°С.

    Для идентификации выделенных микроорганизмов в лаборатории применяют внутривидовую или внутриродовую дифференциацию микроорганизмов, основанную на различиях в антигенной структуре. При этом символически отображают антигенную структуру бактерий в виде антигенной формулы. Например, антигенную формулу одного из сероваров E. coli, вызывающую колиэнтериты у молодняка раннего возраста обозначают как О55:К5:Н21 (серовар, относящийся к серогруппе О55).

    В каждом вирионе любого вируса содержатся различные антигены. Одни из них являются вирусспецифическими. В состав других антигенов входят компоненты клетки хозяина (липиды, углеводы), которые включаются в его внешнюю оболочку. Антигены простых вирионов связаны с их нуклеокапсидами. По своему химическому составу они принадлежат к рибонуклеопротеидам или дезоксирибонуклеопротеидам, которые являются растворимыми соединениями и поэтому обозначаются как S–антигены (solutio – раствор). У сложноорганизованных вирионов одни антигенные компоненты связаны с нуклеокапсидами, другие – с гликопротеидами внешней оболочки. Многие простые и сложные вирионы содержат особые поверхностные V–антигены – гемагглютинин и фермент нейраминидазу.

    Все ткани и клетки организма обладают антигенными свойствами. Одни антигены специфичны для всех млекопитающих, другие видоспецифичны для человека, третьи – для отдельных групп, их называют изоантигенами (например, антигены групп крови). К антигенам, свойственным только данному организму относятся антигены тканевой совместимости.

    Изоантигены или групповые антигены – это антигены, по которым отдельные индивидуумы или группы особей одного вида различаются между собой.

    В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто несколько десятков изоантигенов.

    Изоантигены, генетически связаны, объединены в группы, получившие название: система АВО, резус и др. В основе деления людей на группы по системе АВО лежит наличие или отсутствие на эритроцитах антигенов, обозначенных А и В. В соответствии с этим все люди подразделены на 4 группы. Группа I (О) – антигены отсутствуют, группа II (А) – в эритроцитах содержится антиген А, группа III (В) – эритроциты обладают антигеном В, группа IV (АВ) – эритроциты обладают обоими антигенами. Поскольку в окружающей среде имеются микроорганизмы, обладающие такими же антигенами (их называют перекресно–реагирующими), у человека имеются антитела к этим антигенам, но только к тем, которые у него отсутствуют. К собственным антигенам организм толерантен. При переливании крови или эритроцитов реципиенту, в крови которых содержатся антитела к соответствующему антигену, в сосудах происходит агглютинация перелитых несовместимых эритроцитов, что может вызвать шок и гибель реципиента.

    У части людей эритроциты содержат еще особый антиген, получивший название резус–антигена (Rh). По наличию или отсутствию Rh–антигена люди разделяются на две группы – резус (Rh)–положительных и резус (Rh)–отрицательных. При переливании крови Rh–отрицательному реципиенту, если эритроциты донора содержат Rh–антиген, может развиваться гемолитическая желтуха.

    Антигены главного комплекса тканевой (гисто) совместимости.

    Помимо антигенов, свойственных всем людям и групповых антигенов, каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНС–антигены (англ. Major histocompatibility complex). МНС–антигены человека впервые были обнаружены на лейкоцитах и поэтому имеют другое название – HLA (Human leucocyte antigens). МНС–антигены относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название – трансплантационные антигены. Кроме того, МНС–антигены играют обязательную роль в индукции иммунного ответа на любой антиген.

    Белки I класса находятся на поверхности практически всех клеток организма. Антигены I класса обеспечивают представление антигенов цитотоксическим CD8+–лимфоцитам, а распознавание этого антигена антигенпредставляющим клеткам другого организма при трансплантации приводит к развитию трансплантационного иммунитета.

    МНС–антигены II класса находятся преимущественно на антигенпредставляющих клетках – дендритных, макрофагах, В–лимфоцитах. Основная роль в иммуногенезе антигенов II класса – участие в представлении чужеродных антигенов Т–хелперным лимфоцитам.

    [youtube.player]

    Основными формами иммунного ответа на попадание антигена в организм являются: биосинтез антител, образование клеток иммунной памяти, реакция гиперчувствительности немедленного типа, реакция гиперчувствительности замедленного типа, иммунологическая толерантность, идиотип- антиидиотипические отношения.

    Для гуморального иммунитета характерна выработка специфических антител (иммуноглобулинов).

    Антитела - специфические белки гамма- глобулиновой природы, образующиеся в организме в ответ на антигенную стимуляцию и способные специфически взаимодействовать с антигеном (in vivo, in vitro). В соответствии с международной классификацией совокупность сывороточных белков, обладающих свойствами антител, называют иммуноглобулинами.

    Уникальность антител заключается в том, что они способны специфически взаимодействовать только с тем антигеном, который вызвал их образование.

    Иммуноглобулины ( Ig ) разделены в зависимости от локализации на три группы:

    - сывороточные (в крови);

    - секреторные ( в секретах- содержимом желудочно- кишечного тракта, слезном секрете, слюне, особенно- в грудном молоке) обеспечивают местный иммунитет (иммунитет слизистых);

    - поверхностные ( на поверхности иммунокомпетентных клеток, особенно В- лимфоцитов).

    Любая молекула антител имеет сходное строение ( Y- образную форму) и состоит из двух тяжелых ( Н ) и двух легких ( L ) цепей, связанных дисульфидными мостиками. Каждая молекула антител имеет два одинаковых антигенсвязывающих фрагмента Fab ( fragment antigen binding ), определяющих антительную специфичность, и один Fc ( fragment constant ) фрагмент, который не связывает антиген, но обладает эффекторными биологическими функциями. Он взаимодействует со “своим” рецептором в мембране различных типов клеток ( макрофаг, тучная клетка, нейтрофил).

    Концевые участки легких и тяжелых цепей молекулы иммуноглобулина вариабельны по составу ( аминокислотным последовательностям ) и обозначаются как VL и VH области. В их составе выделяют гипервариабельные участки, которые определяют структуру активного центра антител (антигенсвязывающий центр или паратоп). Именно с ним взаимодействует антигенная детерминанта (эпитоп) антигена. Антигенсвязывающий центр антител комплементарен эпитопу антигена по принципу “ключ - замок” и образован гипервариабельными областями L- и Н- цепей. Антитело свяжется антигеном (ключ попадет в замок) только в том случае, если детерминантная группа антигена полностью вместится в щель активного центра антител.

    Легкие и тяжелые цепи состоят из отдельных блоков- доменов. В легких ( L ) цепях - два домена- один вариабельный ( V ) и один константный ( C ), в тяжелых ( H ) цепях- один V и 3 или 4 ( в зависимости от класса иммуноглобулина ) C домена.

    Существуют легкие цепи двух типов- каппа и лямбда, они встречаются в различных пропорциях в составе различных (всех) классов иммуноглобулинов.

    Выявлено пять классов тяжелых цепей- альфа ( с двумя подклассами), гамма ( с четырьмя подклассами), эксилон, мю и дельта. Соответственно обозначению тяжелой цепи обозначается и класс молекул иммуноглобулинов- А, G, E, M и D.

    Именно константные области тяжелых цепей, различаясь по аминокислотному составу у различных классов иммуноглобулинов, в конечном результате и определяют специфические свойства иммуноглобулинов каждого класса.

    Известно пять классов иммуноглобулинов, отличающихся по строению тяжелых цепей, молекулярной массе, физико- химическим и биологическим характеристикам: IgG, IgM, IgA, IgE, IgD. В составе IgG выделяют 4 подкласса ( IgG1, IgG2, IgG3, IgG4 ), в составе IgA- два подкласса (IgA1, IgA2 ).

    Структурной единицей антител является мономер, состоящий из двух легких и двух тяжелых цепей. Мономерами являются IgG, IgA ( сывороточный), IgD и IgE. IgM- пентамер (полимерный Ig). У полимерных иммуноглобулинов имеется дополнительная j ( joint) полипептидная цепь, которая объединяет ( полимеризует) отдельные субъединицы (в составе пентамера IgM, ди- и тримера секреторного IgA).

    Основные биологические характеристики антител.

    1. Специфичность - способность взаимодействия с определенным (своим) антигеном (соответствие эпитопа антигена и активного центра антител).

    2. Валентность- количество способных реагировать с антигеном активных центров ( это связано с молекулярной организацией- моно- или полимер). Иммуноглобулины могут быть двухвалентными ( IgG ) или поливалентными (пентамер IgM имеет 10 активных центров). Двух- и более валентные антитела навывают полными антителами. Неполные антитела имеют только один участвующий во взаимодействии с антигеном активный центр ( блокирующий эффект на иммунологические реакции, например, на агглютинационные тесты). Их выявляют в антиглобулиновой пробе Кумбса, реакции угнетения связывания комплемента.

    3. Афинность - прочность связи между эпитопом антигена и активным центром антител, зависит от их пространственного соответствия.

    4. Авидность - интегральная характеристика силы связи между антигеном и антителами, с учетом взаимодействия всех активных центров антител с эпитопами. Поскольку антигены часто поливалентны, связь между отдельными молекулами антигена осуществляется с помощью нескольких антител.

    5. Гетерогенность - обусловлена антигенными свойствами антител, наличием у них трех видов антигенных детерминант:

    - изотипические - принадлежность антител к определенному классу иммуноглобулинов;

    - аллотипические- обусловлены аллельными различиями иммуноглобулинов, кодируемых соответствующими аллелями Ig гена;

    - идиотипические- отражают индивидуальные особенности иммуноглобулина, определяемые характеристиками активных центров молекул антител. Даже тогда, когда антитела к конкретному антигену относятся к одному классу, субклассу и даже аллотипу, они характеризуются специфическими отличиями друг от друга (идиотипом). Это зависит от особенностей строения V- участков H- и L- цепей, множества различных вариантов их аминокислотных последовательностей.

    Понятие о поликлональных и моноклональных антителах будет дано в следующих разделах.

    Характеристика основных классов иммуноглобулинов.

    Ig G. Мономеры, включают четыре субкласса. Концентрация в крови- от 8 до 17 г/л, период полураспада- около 3- 4 недель. Это основной класс иммуноглобулинов, защищающих организм от бактерий, токсинов и вирусов. В наибольшем количестве IgG- антитела вырабатываются на стадии выздоровления после инфекционного заболевания (поздние или 7S антитела), при вторичном иммунном ответе. IgG1 и IgG4 специфически (через Fab- фрагменты) связывают возбудителей (опсонизация), благодаря Fc- фрагментам IgG взаимодействуют с Fc- рецепторам фагоцитов, способствуя фагоцитозу и лизису микроорганизмов. IgG способны нейтрализовать бактериальные экзотоксины, связывать комплемент. Только IgG способны транспортироваться через плаценту от матери к плоду (проходить через плацентарный барьер) и обеспечивать защиту материнскими антителами плода и новорожденного. В отличие от IgM- антител, IgG- антитела относятся к категории поздних- появляются позже и более длительно выявляются в крови.

    IgM.Молекула этого иммуноглобулина представляет собой полимерный Ig из пяти субъединиц, соединенных дисульфидными связями и дополнительной J- цепью, имеет 10 антиген- связывающих центров. Филогенетически это наиболее древний иммуноглобулин. IgM- наиболее ранний класс антител, образующихся при первичном попадании антигена в организм. Наличие IgM- антител к соответствующему возбудителю свидетельствует о свежем инфицировании (текущем инфекционном процессе). Антитела к антигенам грамотрицательных бактерий, жгутиковым антигенам- преимущественно IgM- антитела. IgM- основной класс иммуноглобулинов, синтезируемых у новорожденных и младенцев. IgM у новорожденных- это показатель внутриутробного заражения (краснуха, ЦМВ, токсоплазмоз и другие внутриутробные инфекции), поскольку материнские IgM через плаценту не проходят. Концентрация IgM в крови ниже, чем IgG- 0,5- 2,0 г/л, период полураспада- около недели. IgM способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент, активизировать фагоцитоз, связывать эндотоксины грамотрицательных бактерий. IgM обладают большей, чем IgG авидностью (10 активных центров), аффинность (сродство к антигену) меньше, чем у IgG.

    IgA. Выделяют сывороточные IgA (мономер) и секреторные IgA (IgAs). Сывороточные IgA составляют 1,4- 4,2 г/л. Секреторные IgAs находятся в слюне, пищеварительных соках, секрете слизистой носа, в молозиве. Они являются первой линией защиты слизистых, обеспечивая их местный иммунитет. IgAs состоят из Ig мономера, J-цепи и гликопротеина (секреторного компонента). Выделяют два изотипа- IgA1 преобладает в сыворотке, субкласс IgA2 - в экстраваскулярных секретах.

    Секреторный компонент вырабатывается эпителиальными клетками слизистых оболочек и присоединяется к молекуле IgA в момент прохождения последней через эпителиальные клетки. Секреторный компонент повышает устойчивость молекул IgAs к действию протеолитических ферментов. Основная роль IgA- обеспечение местного иммунитета слизистых. Они препятствуют прикреплению бактерий к слизистым, обеспечивают транспорт полимерных иммунных комплексов с IgA, нейтрализуют энтеротоксин, активируют фагоцитоз и систему комплемента.

    IgE. Представляет мономер, в сыворотке крови находится в низких концентрациях. Основная роль- своими Fc- фрагментами прикрепляется к тучным клеткам (мастоцитам) и базофилам и опосредует реакции гиперчувствительности немедленного типа. К IgE относятся “антитела аллергии”- реагины. Уровень IgE повышается при аллергических состояниях, гельминтозах. Антигенсвязывающие Fab- фрагменты молекулы IgE специфически взаимодействует с антигеном (аллергеном), сформировавшийся иммунный комплекс взаимодействует с рецепторами Fc- фрагментов IgE, встроенных в клеточную мембрану базофила или тучной клетки. Это является сигналом для выделения гистамина, других биологически активных веществ и развертывания острой аллергической реакции.

    IgD.Мономеры IgD обнаруживают на поверхности развивающихся В- лимфоцитов, в сыворотке находятся в крайне низких концентрациях. Их биологическая роль точно не установлена. Полагают, что IgD участвуют в дифференциации В-клеток, способствуют развитию антиидиотипического ответа, участвуют в аутоиммунных процессах.

    С целью определения концентраций иммуноглобулинов отдельных классов применяют несколько методов, чаще используют метод радиальной иммунодиффузии в геле (по Манчини)- разновидность реакции преципитации и ИФА.

    Определение антител различных классов имеет важное значение для диагностики инфекционных заболеваний. Обнаружение антител к антигенам микроорганизмов в сыворотках крови- важный критерий при постановке диагноза- серологический метод диагностики. Антитела класса IgM появляются в остром периоде заболевания и относительно быстро исчезают, антитела класса IgG выявляются в более поздние сроки и более длительно (иногда- годами) сохраняются в сыворотках крови переболевших, их в этом случае называют анамнестическими антителами.

    Выделяют понятия: титр антител, диагностический титр, исследования парных сывороток. Наибольшее значение имеет выявление IgM- антител и четырехкратное повышение титров антител (или сероконверсия- антитела выявляют во второй пробе при отрицательных результатах с первой сывороткой крови) при исследовании парных- взятых в динамике инфекционного процесса с интервалом в несколько дней- недель проб.

    Реакции взаимодействия антител с возбудителями и их антигенами (реакция “антиген- антитело”) проявляется в виде ряда феноменов- агглютинации, преципитации, нейтрализации, лизиса, связывания комплемента, опсонизации, цитотоксичности и могут быть выявлены различными серологическими реакциями.

    Динамика выработки антител. Первичный и вторичный иммунный ответ.

    Первичный ответ- при первичном контакте с возбудителем (антигеном), вторичный- при повторном контакте. Основные отличия:

    - продолжительность скрытого периода (больше- при первичном);

    - скорость нарастания антител (быстрее- при вторичном);

    - количество синтезируемых антител (больше- при повторном контакте);

    - последовательность синтеза антител различных классов (при первичном более длительно преобладают IgM, при вторичном- быстро синтезируются и преобладают IgG- антитела).

    Вторичный иммунный ответ обусловлен формированием клеток иммунной памяти. Пример вторичного иммунного ответа- встреча с возбудителем после вакцинации.

    Роль антител в формировании иммунитета.

    Антитела имеют важное значение в формировании приобретенного постинфекционного и поствакцинального иммунитета.

    1. Связываясь с токсинами, антитела нейтрализуют их, обеспечивая антитоксический иммунитет.

    2. Блокируя рецепторы вирусов, антитела препятствуют адсорбции вирусов на клетках, участвуют в противовирусном иммунитете.

    3. Комплекс антиген- антитело запускает классический путь активации комплемента с его эффекторными функциями (лизис бактерий, опсонизация, воспаление, стимуляция макрофагов).

    4. Антитела принимают участие в опсонизации бактерий, способствуя более эффективному фагоцитозу.

    5. Антитела способствуют выведению из организма (с мочой, желчью) растворимых антигенов в виде циркулирующих иммунных комплексов.

    IgG принадлежит наибольшая роль в антитоксическом иммунитете, IgM- в антимикробном иммунитете (фагоцитоз корпускулярных антигенов), особенно в отношении грамотрицательных бактерий, IgA- в противовирусном иммунитете (нейтрализация вирусов), IgAs- в местном иммунитете слизистых оболочек, IgE- в реакциях гиперчувствительности немедленного типа.

    Не нашли то, что искали? Воспользуйтесь поиском:

    [youtube.player]

    Читайте также:

    Пожалуйста, не занимайтесь самолечением!
    При симпотмах заболевания - обратитесь к врачу.