Распространение инфекционных заболеваний в популяции

Цикличность инфекционного заболевания

Каждую инфекционную болезнь вызывает конкретный возбудитель. Однако известны инфекции (например, гнойно-воспалительные процессы), вызываемые различными микробами. С другой стороны, один возбудитель (например, стрептококк) способен вызывать различные поражения.

Контагиозность (заразительность) определяет способность возбудителя передаваться от одного лица к другому и скорость его распространения в восприимчивой популяции. Для количественной оценки контагиозности предложен индекс контагиозности — процент переболевших лиц в популяции за определённый период (например, заболеваемость гриппом в определённом городе за 1 год).

Развитие конкретного инфекционного заболевания ограничено во времени, сопровождается цикличностью процесса и сменой клинических периодов.

1. Инкубационный период — это время, прошедшее с момента попадания микроорганизма в макроорганизм до появления первых клинических признаков заболевания. Обычно инкубационный период характерен только для экзогенных инфекций. В этот период возбудитель размножается, происходит накопление как возбудителя, так и выделяемых им токсинов до определённой пороговой величины, за которой организм начинает отвечать клинически выраженными реакциями.

Продолжительность инкубационного периода может варьировать от часов и суток до нескольких лет и зависит в основном от вида возбудителя. Например, при кишечных инфекциях инкубационный период не длительный — от нескольких часов до нескольких суток. При других инфекциях (грипп, ветряная оспа, коклюш) — от нескольких недель до нескольких месяцев. Но есть и такие инфекции, при которых инкубационный период длится несколько лет: лепра, ВИЧ-инфекция, туберкулез. В этом периоде происходит адгезия клеток и, как правило, возбудители не выявляются.

В этот период идет колонизация возбудителя на чувствительных клетках организма. В этот период появляются первые предшественники заболевания (повышается температура, снижаются аппетит и работоспособность и др.), микроорганизмы образуют ферменты и токсины, которые приводят к местным и генерализованным воздействиям на организм. При таких заболеваниях, как брюшной тиф, оспа, корь, продромальный период очень характерен и тогда уже в этом периоде врач может поставить предварительный диагноз. В этом периоде, как правило, возбудитель не выявляется, кроме коклюша и кори.

3. Период развития заболевания — в этот период идет интенсивное размножение возбудителя, проявление всех его свойств, максимально проявляются клинические проявления, характерные для данного возбудителя (пожелтение кожных покровов при гепатите, появление характерной сыпи при краснухе и т. д.).

В клинически выраженной фазе можно выделить:

- стадии нарастания симптомов (stadium werementum),

- расцвета болезни (stadium acme)

- угасания проявлений (stadium decrementum).

В этот период формируется защитная реакция макроорганизма в ответ на патогенное действие возбудителя, продолжительность этого периода также бывает различной и зависит от вида возбудителя. Например, туберкулез, бруцеллез текут долго, несколько лет — их называют хроническими инфекциями. При большинстве инфекций этот период является самым заразным. В разгар заболевания больной человек выделяет в окружающую среду очень много микробов.

Период клинических проявлений заканчивается выздоровлением или смертью больного. Летальный исход может наступить при таких инфекциях, как менингит, грипп, чума и др. Степень выраженности клинического течения заболевания может быть разной. Болезнь может протекать в тяжелой или легкой форме. А иногда клиническая картина может быть вообще нетипичной для данной инфекции. Такие формы заболевания называют атипичными, или стертыми. Поставить диагноз в таком случае трудно и тогда используются микробиологические методы исследования.

4. Период выздоровления (реконвалесценция) — как конечный период инфекционной болезни может быть быстрым (кризис) или медленным (лизис), а также характеризоваться переходом в хроническое состояние. В благоприятных случаях клинические проявления обычно исчезают быстрее, чем наступает нормализация морфологических нарушений органов и тканей и полное удаление возбудителя из организма. Выздоровление может быть полным либо сопровождаться развитием осложнений (например, со стороны ЦНС, костно-мышечного аппарата или сердечно-сосудистой системы). Период окончательного удаления инфекционного агента может затягиваться и для некоторых инфекций (например, брюшного тифа) может исчисляться неделями.

В этот период погибают возбудители, нарастают иммуноглобулины класса G и А. В этот период может развиться бактерионосительство: в организме могут сохраняться антигены, которые длительно будут циркулировать по организму. Период выздоровления сопровождается снижением температуры, восстановлением работоспособности, повышением аппетита. В этот период из организма больного выводятся микробы (с мочой, испражнениями, мокротой). Продолжительность периода выделения микробов неодинакова при различных инфекциях. Например, при ветрянке, сибирской язве больные освобождаются от возбудителя при исчезновении клинических проявлений болезни. При других болезнях этот период продолжается 2-3 недели.

Инфекционный процесс не всегда проходит все стадии и может заканчиваться на ранних этапах заболевания. Например, если человек привит от того или иного заболевания, то периода развития заболевания может и не быть. В любом периоде инфекционной болезни, но особенно в период ее разгара, возможны осложнения: специфические и неспецифические.

Специфические — это осложнения, вызванные возбудителем данного заболевания и являющиеся следствием необычной выраженности функционально-морфологических изменений в организме больного (например, увеличение миндалин при стафилококковой ангине или перфорация язв кишечника при брюшном тифе).

Неспецифические — это осложнения, вызванные микроорганизмами другого вида, как правило, условно-патогенными, являющимися неспецифическими для данного заболевания (например, развитие гнойного среднего отита у больного корью).

Изучением условий возникновения инфекционных болезней и механизмов передачи их возбудителей, а также разработкой мероприятий по их предупреждению занимается отдельная медицинская наука — эпидемиология.

Практически любой эпидемический процесс включает три взаимосвязанных компонента:

1) источник инфекции;

2) механизм, пути и факторы передачи возбудителя;

3) восприимчивый организм или коллектив.

Отсутствие одного из компонентов прерывает течение эпидемического процесса.

Источники инфекции (возбудителя)

Различные одушевлённые и неодушевлённые объекты внешней среды, содержащие и сохраняющие патогенные микроорганизмы, обозначают термином резервуары инфекции, но их роль в заболеваемости человека далеко не одинакова. Для большинства инфекций человека основной резервуар и источник — больной человек, в том числе лица, находящиеся в инкубационном периоде (ранние носители) и на этапах реконвалесценции, либо бессимптомные (контактные) микробоносители. В соответствии с источником инфекции выделяют следующие типы инфекционных болезней.

Антропонозы - Инфекции, при которых источником инфекции является только человек. [от греч. anthropos, человек, + nosos, болезнь].

Зоонозы - Инфекции, при которых источниками инфекции являются животные, но ими могут болеть и люди. [от греч. won, животное, + nosos, болезнь].

Зооантропонозы - Инфекции, поражающие животных и способные передаваться человеку. [от греч. zoon, животное, + anthropos, человек, + nosos, болезнь], например сибирская язва, бруцеллёз.

Сапронозы - Инфекции, развивающиеся после проникновения свободноживущих бактерий или грибов в организм человека с объектов окружающей среды и поверхности тела (например, при попадании в рану) [от греч. sapros, гнилой, + nosos, болезнь].

Механизмы, факторы и пути передачи инфекции (возбудителя)

Механизмы передачи определяют способы перемещения инфекционного агента из заражённого организма в восприимчивый организм.

Для этого возбудитель должен быть выведен из заражённого организма, некоторое время пребывать во внешней среде и внедриться в восприимчивый организм.

Выделяют:

2. Аэрогенный (респираторный),

3. Кровяной (трансмиссивный)

4. Контактный механизмы передачи.

Указанные механизмы передачи характерны для подавляющего большинства инфекций человека; с позиций эпидемиологии пути их распространения рассматриваются как горизонтальная передача возбудителя. Существует также группа заболеваний (обычно вирусных), возбудители которых способны трансплацентарно переходить от матери к плоду (вертикальная передача).

Факторы передачи — элементы внешней среды, обеспечивающие передачу возбудителей инфекционных болезней.

Ими могут быть вода, различные пищевые продукты, воздух, почва, членистоногие переносчики, бытовые предметы и т.д. Пути передачи определяют конкретные факторы передачи или их сочетание, обеспечивающие перенос инфекционного агента от больного человека или от носителя здоровому.

Обычно механизмы передачи инфекционного агента имеют несколько путей:

- Фекально-оральный механизм включает алиментарный, водный или контактно-бытовой пути передачи.

- Кровяной (трансмиссивный) механизм включает передачу возбудителей через укусы переносчиков, парентеральный и половой пути передачи.

- Аэрогенный (респираторный) механизм включает воздушно-капельный и воздушно-пылевой пути передачи возбудителя.

- Контактный механизм включает раневой и контактно-половой пути передачи.

Специфичность пути передачи инфекции (возбудителя)

Для большинства патогенных микроорганизмов путь передачи от больного лица здоровому специфичен, и нарушение эпидемического цикла может либо прервать его (например, попадание шигелл в дыхательный тракт), либо усугубить тяжесть заболевания (например, попадание возбудителя сифилиса в кровоток через загрязнённую инъекционную иглу).

С другой стороны, проникновение патогенного микроорганизма в области, резистентные к его инвазивным потенциям, обычно не вызывает заболевания (например, большинство возбудителей респираторных инфекций, попав в ЖКТ, погибает под действием желудочного сока и пищеварительных ферментов).

В соответствии с механизмами передачи возбудителя принята классификация инфекционных болезней, которую разработал Л.В. Громашевский.

I группа — болезни с фекально-оральным механизмом передачи (например, кишечные инфекции);

II группа - болезни с аэрогенным механизмом передачи (например, грипп или корь);

III группа — болезни с трансмиссивным механизмом передачи (например, малярия, клещевой энцефалит);

IV группа — болезни с контактным механизмом передачи (например, венерические болезни).

Известно, что при наличии в популяции 95% невосприимчивых лиц циркуляция возбудителя прекращается, а сама популяция расценивается как эпидемически благополучная.

Для предупреждения развития инфекционных заболеваний широко применяют комплекс мероприятий, направленных на различные звенья инфекционного процесса.

Мероприятия I группы по предупреждению инфекционных заболеваний направлены на выявление, изоляцию и лечение (санацию) больного или бактерионосителя. Их часто дополняют карантинными мероприятиями.

Мероприятия II группы по предупреждению инфекционных заболеваний представлены комплексом санитарно-гигиенических мер, направленных на разрыв механизмов и путей передачи возбудителя. Мероприятия состоят из обеспечения и соблюдения гигиенических нормативов, разукрупнения организованных контингентов, санитарного контроля за пищевыми продуктами и предприятиями, их производящими, соблюдения правил асептики и антисептики в лечебно-профилактических учреждениях (ЛПУ), проведения дезинфекций и дезинсекций и т.д.

В соответствии с эффективностью проводимых мероприятий по предупреждению инфекционных заболеваний выделяют управляемые инфекции (для их предупреждения эффективно используют различные вышеуказанные мероприятия) и неуправляемые инфекции (меры предупреждения отсутствуют).

Спорадическая заболеваемость [от греч. sporadikos, рассеянный] — обычный уровень заболеваемости конкретной инфекцией в отдельном регионе за определённый период (обычно за год). Как правило, количество больных не превышает десяти случаев на 100 000 населения.

Эпидемия [от греч. epi-, над, + demos, народ].

В некоторых случаях обычный уровень заболеваемости конкретной инфекцией за определённый период резко превышает уровень спорадической заболеваемости. В таких случаях происходит эпидемическая вспышка, а при вовлечении в процесс нескольких регионов — эпидемия.

В соответствии с распространённостью инфекционные заболевания также выделяют повсеместные (убиквитарные) и эндемичные инфекции, выявляемые на определённых, нередко небольших территориях.

По частоте случаев различают:

- кризисные инфекции — заболеваемость более 100 случаев на 100 000 населения (например, ВИЧ-инфекция);

- массовые инфекции — заболеваемость составляет 100 случаев на 100 000 населения (например, ОРВИ);

- распространённые управляемые инфекции — заболеваемость составляет 20-100 случаев на 100 000 населения (например; корь);

- распространённые неуправляемые инфекции — заболеваемость составляет менее 20 случаев на 100 000 населения (например, анаэробные газовые инфекции);

- спорадические инфекции — заболеваемость составляют единичные случаи на 100 000 населения (например, риккетсиозы).

Возбудители убиквитарных инфекций распространены повсеместно. Эндемичные возбудители вызывают эндемии [от греч. еn-, в, + -demos, народ]. Как критерий эпидемического процесса эндемия не отражает его интенсивность, но указывает на заболеваемость в определённом регионе.

Выделяют истинные и статистические эндемии:

- Истинные эндемии обусловливают природные условия региона (наличие источников инфекции, специфических переносчиков и резервуаров сохранения возбудителя вне организма человека). Поэтому истинные эндемии также известны как природно-очаговые инфекции.

- Понятие статистической эндемии также применяют и в отношении убиквитарных инфекций, распространённых в различных природных условиях (например, брюшного тифа). Их частоту обусловливают не столько климатические, сколько социально-экономические факторы (например, недостатки водоснабжения). Кроме того, понятие социальной эндемии применяют и к неинфекционным болезням, например эндемичному зобу, флюорозу и др.

Учение о природной очаговости инфекционных болезней, ставшее неотъемлемой частью медицинской микробиологии, создал выдающийся отечественный паразитолог Е.Н. Павловский.

Природно-очаговые инфекции — особая группа болезней, имеющих эволюционно возникшие очаги в природе. Природный очаг — биотоп на территории конкретного географического ландшафта, заселённый животными, видовые или межвидовые различия которых обеспечивают циркуляцию возбудителя за счёт его передачи от одного животного другому, обычно через кровососущих членистоногих-переносчиков.

Природно-очаговые инфекции разделяют на эндемичные зоонозы, ареал которых связан с ареалом животных — хозяев и переносчиков (например, клещевой энцефалит), и эндемичные метаксенозы, связанные с ареалом животных, прохождение через организм которых является важным условием распространения болезни (например, желтая лихорадка). При появлении в определённое время в очаге человека переносчики могут заразить его природно-очаговой болезнью. Так зоонозные инфекции становится антропозоонозными.

Не нашли то, что искали? Воспользуйтесь поиском:

[youtube.player]

Источники инфекции. Инфекционный процесс может быть вызван как представителями нормальной микрофлоры организма хозяина (эндогенные инфекции), так и микроорганизмами извне (экзогенные инфекции).

Условно-патогенные бактерии нормальной микрофлоры кишечника становятся источниками инфекции только при определённых условиях (например, при перфорации кишечника). Энтеробактерии и неспорообразующие анаэробы (например, Bacteroides fragilis) вызывают внутрибрюшинные абсцессы. При попадании в лёгкие содержимого желудочного и ротоглотки, в котором присутствуют представители нормальной микрофлоры (факультативные и облигатные анаэробы), развивается пневмония или абсцесс лёгкого.

Обитающий на слизистой оболочке передних отделов носовых ходов Staphylococcus aureus может вызвать раневую инфекцию после хирургического вмешательства. Нейтропенический сепсис (бактериемия) возникает, когда бактериям удаётся преодолеть внутренние защитные механизмы слизистой оболочки кишечника или при снижении функции нейтрофилов во время химиотерапевтического лечения лейкемии. Различные изменения в организме хозяина повышают риск развития заболеваний: хирургическое вмешательство и катетеризация сосудов способствуют развитию инфекций, вызываемых представителями нормальной микрофлоры; применение иммунодепрессантов увеличивает риск возникновения оппортунистических инфекций, вызываемых возбудителями с низкой вирулентностью.

Источником экзогенных инфекций могут стать различные животные (зоонозныс инфекции). В этом случае заражение происходит контактно-бытовым и пищевым путями. Кроме того, инфекции могут быть вызваны микроорганизмами, обитающими в окружающей среде (например, Legionella или Clostridium).

Изменение условий окружающей среды ведёт к выраженному повышению риска заражения. Так, распространению зоонозных инфекций способствовало активное развитие сельского хозяйства и земледелия. Например, скармливание крупному рогатому скоту белков животного происхождения привело к возникновению эпидемии губчатой энцефалопатии, которая затем распространилась среди людей (вариантная болезнь Крейцфельдта—Якоба).

Развитие птицеводства способствовало распространению сальмонеллёза (факторы передачи — пух и перо домашней птицы), а механизация пищевой промышленности — повышению риска перекрёстной контаминации. Избежать подобных проблем позволяет совершенствование методов ведения сельского хозяйства и соблюдение санитарно-гигиенических норм.

Недостаточный контроль систем вентиляции в зданиях приводит к возникновению заболеваний, вызываемых Legionella pneumophila.

Сложный жизненный цикл некоторых микроорганизмов помогает им выжить в неблагоприятных условиях и способствует их распространению. Например, возбудители, выделяющиеся из организма хозяина с экскрементами, как правило, передаются посредством фекально-орального механизма. Многие возбудители часть своего жизненного цикла проводят в организме переносчика, и в этом случае заражение происходит во время укуса. Иногда в качестве промежуточного хозяина паразиты могут использовать не животных, а человека (например, при эхинококкозе).


Каждый микроорганизм по-своему приспосабливается к условиям окружающей среды. Так, бактерии способны долгое время выживать в неблагоприятных условиях в виде спор — покоящихся клеток со сниженным метаболизмом, снабжённых твёрдой многослойной оболочкой. Яйца гельминтов также снабжены твёрдой оболочкой, помогающей им выживать в окружающей среде. Распространению возбудителей способствует их длительное персистирование в организме хозяина, который в этом случае становится резервуаром инфекции.

Микроорганизмы, выделяющиеся в окружающую среду при чихании, могут долгое время находиться в воздухе в составе микроскопических капель (5 мкм). Инфекционный процесс возникает при их попадании в лёгкие здорового человека (воздушно-капельный путь передачи). Этим способом происходит распространение как возбудителей респираторных заболеваний (вирусы гриппа и др.), так и микроорганизмов, поражающих другие органы (например, Neisseria meningitides).

Возбудителей желудочно-кишечных расстройств (Salmonella) можно обнаружить в воде и пище (алиментарный путь передачи). Такое распространение инфекции наблюдают при токсоплазмозе и цистицеркозе, поражающих различные органы.

Через неповреждённый кожный покров проникают Leptospira, Treponema и Schistosoma. Передача ВИЧ происходит во время инъекций и переливаний крови (при нарушении кожного барьера). Представители нормальной микрофлоры кожного покрова (Staphylococcus epidermidis) могут проникать в организм через венозный катетер. Переносчиками некоторых инфекций служат насекомые, питающиеся кровью (например, малярию переносят самки комара рода Anopheles).

При половом контакте происходит передача микроорганизмов, не способных к жизни вне организма человека (например, Neisseria gonorrhoeae или Treponema pallidum). При этом заражению способствуют изъязвления слизистой оболочки половых органов.

Улучшение социальной обстановки и условий окружающей среды способствует снижению риска заражения и распространения инфекционных болезней. Например, соблюдение санитарно-гигиенических норм ведёт к уменьшению риска возникновения диареи, а улучшение жилищных условий препятствует распространению туберкулёза. Кроме того, полноценное питание уменьшает восприимчивость человека к инфекционным заболеваниям.

Однако как ни парадоксально, с увеличением уровня жизни возрастает и смертность от некоторых инфекционных заболеваний. Тяжесть осложнений инфекционного процесса прямо пропорциональна возрасту пациента, например при паралитическом полиомиелите или ветряной оспе.

Просвещение населения и распространение инфекций. Существует большое количество программ медицинского просвещения населения, охватывающих такие проблемы, как половое воспитание, рекомендации для беременных, соблюдение правил личной гигиены (гигиенические нормы при приёме пищи, рекомендации для путешественников и др.), использование одноразовых игл и шприцев.

Безопасность пищевых продуктов и распространение инфекций. В Европейском союзе существуют общепринятые стандарты безопасности пищевых продуктов. Контроль за их соблюдением осуществляют специалисты по вопросам гигиены окружающей среды, а также представители Министерства окружающей среды, продовольствия и сельского хозяйства. Пастеризация молока помогает снизить риск возникновения заболеваний, вызываемых Mycobacterium bovis и бактериями рода Campylobacter.

Борьба с переносчиками инфекций. Борьбе с переносчиками инфекций придают огромное значение в регионах, где промежуточными хозяевами возбудителей могут быть насекомые. Лица, посещающие тропические страны, могут существенно снизить риск развития заболевания, приняв меры, предотвращающие нападение и укусы насекомых. Попытки контролировать популяции насекомых с помощью инсектицидов могут быть неудачными вследствие наличия резистентности к этим препаратам.

Для профилактики некоторых заболеваний (например, дифтерия, менингококковая инфекция) применяют лекарственные препараты. Цель — уничтожение возбудителей заболевания в организме носителя для предупреждения развития острого состояния или распространения инфекции.

Например, для профилактики менингококковой инфекции применяют рифампицин или ципрофлоксацин, приём изониазида рекомендован пациентам с риском обострения туберкулёза при снижении иммунитета.

В большинстве стран существует департамент здравоохранения, занимающийся изучением, профилактикой и лечением инфекционных заболеваний. Обязанности департамента:
• контроль за инфекционной заболеваемостью;
• эпидемиологическое обследование в очаге инфекционного заболевания;
• контроль за вакцинопрофилактикой;
• научные эпидемиологические исследования и обучение медицинского персонала.

Для предотвращения вспышек зоонозных инфекционных заболеваний необходимо тесное сотрудничество между учреждениями (министерствами) пищевой и сельскохозяйственной промышленности и органами санитарно-эпидемиологического надзора. В некоторых странах функции всех этих организаций выполняет одна из них, например Департамент здравоохранения в Великобритании и СДС — Центр по контролю и предупреждению распространения заболеваний — в США. Кроме того, в ведении этих организаций находится решение проблемы биологического терроризма. При этом особую важность приобретает быстрое определение вида возбудителя и своевременное оповещение населения о применении биологического оружия.

[youtube.player]

Как математика помогает бороться с эпидемиями

Эпидемии издавна угрожали человечеству, и только в ХХ веке были разработаны эффективные средства борьбы с инфекциями. К числу этих средств принадлежат и системы дифференциальных уравнений — математика помогает моделировать распространение эпидемий и помогает понять, как следует с ними бороться. Это наш третий материал о самых интересных дифференциальных уравнениях и о том, где и как они применяются (предыдущие материалы можно прочитать здесь и здесь). Если вы читаете нас с телефона, переключайте страницу на десктопную версию, так вы сможете увидеть интерактивный график целиком.

В XXI веке мир уже успел столкнуться с эпидемией птичьего гриппа в Юго-Восточной Азии (в 2013 году) и вспышкой заболеваний лихорадкой Эбола в Африке (2015). Но в истории человечества бывали и куда более масштабные эпидемии.

В 551-580 годах нашей эры в Восточной Римской империи разразилась первая задокументированная пандемия чумы, получившей название Юстиниановой, в результате которой погибло около 100 миллионов человек (по другим данным, жертв могло быть значительно меньше). Спустя еще 800 лет в Евразию и Северную Африку пришла Черная смерть — пандемия чумы, сразившая от трети до половины тогдашнего населения этих регионов.

В результате Первой мировой войны, вызвавшей перемещение большого количества людей, в 1918 году распространился испанский грипп, охвативший более 500 миллионов человек и погубивший каждого десятого заболевшего. Эта пандемия стала самой масштабной за всю историю человеческой цивилизации, коснувшись до 30 процентов населения Земли.

В медицинской классификации эпидемией называют прогрессирующее распространение инфекционного заболевания на уровне выше среднего на данной территории. В случае распространения эпидемии на большие территории или территории многих стран говорят о пандемии.

Для эпидемии среди животных применяется термин эпизоотия, а среди растений — эпифития. Этим явлениям ученые также уделяют большое внимание, поскольку они, в свою очередь, помогают понять механизм распространения инфекций.

Изучение механизмов развития и распространения эпидемий является важным способом борьбы с заболеваниями наряду с поиском новых лекарств, вакцинацией и профилактическими мерами. На помощь медикам пришли математики — для этого им пришлось объединить дифференциальные уравнения и теорию вероятности.

Первую попытку использовать математический аппарат для исследования механизмов распространения заболеваний предпринял Даниил Бернулли, ранее открывший первые законы гидродинамики. Следующий шаг сделал Уильям Фарр, применивший в 1840 году нормальное распределение к анализу смертности от оспы.

В рамках этой модели с помощью систем дифференциальных уравнений (при условии непрерывности времени и большой популяции) или разностных уравнений (при дискретном времени и ограниченной популяции) описывается динамика распространения заболевания.

SIR–модель получила заслуженную популярность в силу простоты построения и использования. Ее применение позволяет точно моделировать эпидемии гриппа и других заболеваний в больших городах, вводить новые параметры и анализировать разные сценарии.

Система уравнений SIR:


  • S(t) — численность восприимчивых индивидов в момент времени t;
  • I(t) — численность инфицированных индивидов в момент времени t;
  • R(t) — численность переболевших индивидов в момент времени t;
  • β — коэффициент интенсивности контактов индивидов с последующим инфицированием;
  • γ — коэффициент интенсивности выздоровления инфицированных индивидов.

Первое уравнение системы означает, что изменение числа здоровых (и при этом восприимчивых к заболеванию) индивидуумов уменьшается со временем пропорционально числу контактов с инфицированными. После контакта происходит заражение, восприимчивый переходит в состояние инфицированного.

Второе уравнение показывает, что скорость увеличения числа заразившихся растет пропорционально числу контактов здоровых и инфицированных и уменьшается по мере выздоровления последних.

Третье уравнение демонстрирует, что число выздоровевших в единицу времени пропорционально числу инфицированных. Иначе говоря, каждый заболевший через некоторое время должен поправиться.


описывает неизменность численности популяции (и не учитывает случаи смерти от заболевания).

Графики решения выглядят так (это интерактивный график, в нем можно регулировать параметры β и γ):

Здесь синяя линия — число восприимчивых индивидов, красная — инфицированных, зеленая — переболевших.

Красный график интенсивности эпидемии, показывающей количество одномоментно болеющих индивидов, определяется параметром:


В 2012 году британская компания Ndemic Creation выпустила игру “Plague Inc.”, биологический симулятор эпидемий. По сценарию игры необходимо развить одно из выбранных заболеваний настолько, чтобы оно уничтожило жизнь на Земле.

На базовых уровнях игры распространение заболевания происходит в точном соответствии с моделью SIR. Если принять, что вместо выздоровления происходит гибель организма, то зеленый график становится графиком числа умерших — каждый игрок может увидеть его при успешном прохождении уровня.

“Plague Inc.” является одной из лучших стратегий среди существующих на рынке и на протяжении многих лет пользуется популярностью у десятков миллионов поклонников.

SIR-модель перестает работать в случае необходимости учитывать неоднородность популяции (например, различную плотность населения в разных районах), разные пути передачи инфекции и факторы случайности, значимые в малых популяциях и на начальной фазе распространения заболевания.

Развитием модели SIR стали, в частности, следующие модели:

Именно по этой модели развиваются по-настоящему опасные эпидемии, поскольку длительный инкубационный период может препятствовать своевременному обнаружению заболевания. В этом случае есть риск, что заболевание охватит значительное число индивидуумов в популяции.


  • μ — уровень смертности;
  • α — величина, обратная среднему инкубационному периоду заболевания;
  • E(t) — численность индивидов — носителей заболевания в момент времени t.

Как и в модели SIR, первое уравнение системы означает, что изменение числа здоровых (и при этом восприимчивых к заболеванию) индивидуумов уменьшается со временем пропорционально числу контактов с инфицированными. После заражения здоровый индивид переходит в состояние контактного по данному заболеванию, или носителя инфекции.

Второе уравнение вносит задержку по времени при переходе из состояния контактного в состояние инфицированного (больного). Это происходит через время, равное инкубационному периоду болезни.

Четвертое уравнение демонстрирует, что число выздоровевших в единицу времени пропорционально числу инфицированных. При этом в каждом состоянии индивидуум может погибнуть, что учитывает коэффициент μ в каждом уравнении.

Иначе говоря, в каждый момент времени каждый индивидуум с определенной вероятностью может заразиться, через некоторое время — заболеть, а затем поправиться либо погибнуть.

Численность популяции N = S + E + I + R при этом не является постоянной с течением времени.

Интенсивность эпидемии описывает базовый коэффициент воспроизведения:


Например, построим симуляцию, использовав следующие параметры:

  • На площади 20 × 20 размещены 100 индивидуумов (заполнение 25 процентов);
  • Индивидуумы на каждом шаге перемещаются с вероятностью 80 процентов, в случае контакта здорового индивидуума (зеленая точка) с инфицированным (красная точка) происходит заражение с вероятностью 50 процентов;
  • Заражение длится 6 дней, в течение которых возможна смерть организма с вероятностью 50 процентов либо полное выздоровление с приобретением иммунитета;
  • В момент начала эпидемии примем, что инфицированы 5 процентов организмов и еще 5 процентов имеют иммунитет;
  • Модель дискретная, один день = один шаг модели.

С помощью моделирования мы видим, что 49 организмов из 100 погибнут в результате эпидемии длительностью в 29 дней.

Симуляция эпидемии с заданными параметрами

Epidemic Simulator позволяет моделировать результаты эпидемий при различных плотности популяции, заразности, летальности и устойчивости заболеваний.


Вместе первое и второе уравнение означают, что число здоровых и больных в сумме не меняется, а число заражений пропорционально числу контактов здоровых и больных.

Второе уравнение описывает изменение числа заболевших в единицу времени, которое пропорционально числу заражений (числу контактов здоровых и инфицированных индивидуумов) за вычетом числа выздоровлений.

График развития заболевания в соответствии с этой моделью выглядит так (график интерактивный, можно регулировать параметры β и γ):

Синяя линия — число восприимчивых индивидов, красная — инфицированных в текущий момент.

Эта модель, построенная для заболевания с инкубационным периодом и учитывающая иммунитет детей, приобретенный внутриутробно, — одна из самых сложных для анализа в силу наличия большого числа независимых параметров. Система уравнений для нее выглядит так:

[youtube.player]

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.