Какой белок входит в состав фибрилл спирохет

Спирохеты — тонкие, длинные, извитые (спиралевидной формы) бактерии, отличающиеся от спирилл подвижностью, обусловленной сгибательными изменениями клеток. Спирохеты имеют наружную мембрану клеточной стенки, окружающую протоплазматический цилиндр с цитоплазматической мембраной. Под наружной мембраной клеточной стенки (в периплазме) расположены периплазматические фибриллы, которые, как бы закручиваясь вокруг протоплазматического цилиндра спирохеты, придают ей винтообразную форму (первичные завитки спирохет). Фибриллы прикреплены к концам клетки и направлены навстречу друг другу. Другой конец фибрилл свободен. Число и расположение фибрилл варьирует у разных видов. Фибриллы участвуют в передвижении спирохет, придавая клеткам вращательное, сгибательное и поступательное движение (рис. 7). При этом спирохеты образуют петли, завитки, изгибы, которые названы вторичными завитками.


Рис. 7. Двигательный аппарат спирохет

Спирохеты плохо воспринимают красители из-за большого количества липидов в оболочке. Их окрашивают по методу Романовского-Гимзы или серебрением, а в живом виде исследуют с помощью фазово-контрастной или темнопольной микроскопии. Спирохеты представлены тремя родами, патогенными для человека: Тгероnеmа, Воrreliа, Leptospira.

Трепонемы (род Treponema, вид Т.раllidum, возбудитель сифилиса) имеют вид тонких штопорообразно закрученных нитей с 8-12 равномерными мелкими завитками. Вокруг протопласта трепонем расположены фибриллы, Окрашиваются в бледно-розовый цвет по методу Романовского-Гимзы.

Боррелии (род Borrelia, вид В.recurrentis, возбудитель возвратного тифа) более длинные, имеют по 3-8 крупных неравномерных завитков и 8-20 фибрилл. Окрашиваются в сине-фиолетовый цвет по методу Романовского-Гимзы.

Лептоспиры (род Leptospira, вид L.interrogans, возбудитель лептоспироза) имеют завитки неглубокие и частые - в виде закрученной веревки (завитки первого порядка). Концы этих спирохет изогнуты наподобие крючков с утолщениями на концах. Образуя вторичные завитки, они приобретают вид букв "S" или "С"; имеют две осевые нити. Окрашиваются в красно-розовый цвет по методу Романовского-Гимзы.

Таблица 6 Дифференциальные признаки спирохет

Номенклатура Инфекционное заболевание Размеры, кол-во и характер завитков Метод Романовского-Гимзы (цвет)
род Borrelia, вид В.recurrentis Возвратный тиф 3-8 крупных неравномерных завитков сине-фиолетовый
род Treponema, вид Т.раllidum Сифилис 8-12 равномерных мелких завитков бледно-розовый
род Leptospira, вид L.interrogans Лептоспироз Неглубокие частые завитки 1-го и завитки 2-го порядка, придающие бактерии форму букв "S" или "С" красно-розовый

5. Грибы

Грибы — это эукариоты, относящиеся к царству Fungi (Муcetes, Mycota). Это многоклеточные или одноклеточные нефотосинтезирующие (бесхлорофилльные) микроорганизмы с клеточной стенкой. Широко распространены в природе, особенно в почве.

Грибы имеют ядро с ядерной оболочкой, цитоплазму с органеллами, цитоплазматическую мембрану и многослойную ригидную клеточную стенку, состоящую из нескольких типов полисахаридов (маннанов, глюканов, целлюлозы, хитина), а также белка, липидов и др. Некоторые грибы образуют капсулу. Цитоплазматическая мембрана содержит гликопротеины, фосфолипиды и эргостеролы (в отличие от холестерина — главного стерола тканей млекопитающих). Грибы являются грамположительными микробами, вегетативные клетки — некислотоустойчивые. Тело гриба называется талломом. Различают два основных типа грибов: гифальный и дрожжевой.

Гифальные (плесневые грибы)образуют ветвящиеся тонкие нити (гифы). Гифы (от греч. hypha, паутина) представляют собой разветвленные микроскопические трубки диаметром 2-10 мкм, содержащие цитоплазму и органеллы. Совокупность гиф обозначают термином мицелий (от греч. туkes — гриб и helos — нарост). Образование мицелия — отличительный признак истинных грибов (Еumycota). Гифы высших грибов содержат перегородки (септы), разделяющие их на отдельные клетки. Септы имеют отверстия, позволяющие цитоплазме и отдельным органеллам перетекать из одной клетки в другую. Гифы низших грибов не имеют перегородок и называются ценоцитными, или асептированными. Таким образом, плесневый гриб представляет собой ценоцит (от греч. koinos— общий и kytos — клетка) — обширную территорию цитоплазмы с множеством ядер, располагающуюся в скоплении трубок-гиф. Врастающая в субстрат часть тела гриба, абсорбирующая питательные вещества, — вегетативный мицелий, а растущая на поверхности субстрата часть — воздушный мицелий. Воздушный мицелий придает поверхности колоний плесневых грибов характерную шерстистую или пушистую фактуру. Нередко воздушный мицелий образуют специализированные гифы, несущие репродуктивные структуры.

Таблица 7 Грибы, имеющие медицинское значение

Таксоны Основные роды Болезни людей
Зигомицеты (тип Zygomycota) Низшие грибы (имеют несептированный мицелий, размножение половое и бесполое) Mucor, Rhizopus, Rhizomucor Зигомикоз (мукоромикоз)
Аскомицеты (тип Ascomycota) Сумчатые грибы, большинство имеют септированный мицелий Дрожжи: Saccharomyces Многочисленные микозы
Arthroderma (Trichophyton, Microsporum) Дерматомикозы
Aspergillus, Penicillium Аспергиллез, пенициллоз
Базидиомицеты (тип Basidiomycota) Дрожжи: Filobasidiella (Cryptococcus neoformans) Криптококкоз
Дейтеромицеты (формальная группа Deiteromycota) Несовершенные дрожжи: Candida, Cryptococcus, Trichosporon Кандидозы, криптококкоз
Coccidioides (C.immitis) Кокцидоидомикоз

Дрожжевые и дрожжеподобные грибы.Дрожжи и дрожжеподобные грибы представлены отдельными овальными клетками размером 3-10 мкм, морфологически сходными между собой. При бесполом размножении дрожжи образуют почки или делятся, что приводит к одноклеточному росту. Могут образовывать псевдогифы и ложный мицелий (псевдомицелий), состоящие из цепочек удлиненных клеток. Грибы, аналогичные дрожжам, но не имеющие полового способа размножения, называются дрожжевыми или дрожжеподобными. Они размножаются только бесполым способом — почкованием или делением. На питательных средах дрожжи и дрожжеподобные грибы образуют блестящие, выпуклые колонии, сходные с колониями бактерий.

Многие грибы обладают диморфизмом — способностью давать мицелиальный или дрожжеподобный рост в зависимости от различных факторов (например, условий культивирования).

У грибов выделяют половой и бесполый типы размножения. Бесполое размножение реализуется путем образования конидий и спорангиоспор, содержащих весь генетический материал, необходимый для возникновения и развития новой колонии. Половым путем образуются аскоспоры, базидиоспоры и зигоспоры.

Среди грибов, имеющих медицинское значение, выделяют три типа (Phylum) или отдела, имеющие половой способ размножения (совершенные грибы): зигомицеты (Zygomycota), аскомицеты (Askomycota) и базидиомицеты (Ваsidiomycota). Кроме того, выделяют условный тип/группу грибов — дейтеромицеты (Deiteromycota), у которых имеется только бесполый способ размножения (несовершенные грибы).

Не нашли то, что искали? Воспользуйтесь поиском:


По особенности укладки в трехмерном пространстве различают две большие группы белков: глобулярные и фибриллярные. Большинство протеинов относится к первой фракции, которая соответствует типичной модели третичной структуры, описывающей аминокислотную цепь как сферический клубок с гидрофобным центром и гидрофильной поверхностью. Фибриллярные белки — это специфическая группа, характеризующаяся нитевидной формой молекул.

Общая характеристика пространственной структуры белка

В первоначальном виде синтезированный белок представляет собой линейную цепочку аминокислот, соединенных друг с другом пептидными связями. Однако на пути к конечной функциональной форме молекула претерпевает несколько стадий пространственной укладки за счет различных химических взаимодействий. Каждый этап формирования обозначен соответствующими структурами: первичной, вторичной, третичной и четвертичной (если имеется).


Глобулярные белки характеризуются трехмерной пространственной конформацией, которая удерживается комплексом слабых химических связей (водородные, ионные, гидрофобные и т. д.). По форме молекула такого протеина напоминает сферический клубок.


Полипептидные цепи фибриллярных белков формируют длинные волокна, которые состоят из повторяющихся элементов вторичной структуры. Устройство третичной конформации нитевидных протеинов по сравнению с глобулой значительно примитивнее, однако обеспечивает хорошую стабильность.

Основные отличия нитевидных белков от сферических

Кроме пространственной формы, фибриллярные белки отличаются от глобулярных по:

Волокнистые протеины обычно крупнее сферических и представляют собой длинные стержни, сформированные из спиралей. В отличие от глобулярных белков, пространственная конформация фибриллярных обеспечивается за счет сильных водородных связей. По этой причине волокнистые протеины более стабильны и не так легко денатурируют, как сферические.


В отличие от глобулярных белков, фибриллярные:

  • не растворяются в воде, а также слабых кислотах и основаниях;
  • растворимы в сильных щелочах и кислотах;
  • обладают свойствами растяжимости и сжатия;
  • характеризуются высокой устойчивостью к пищеварительным ферментам.

Глобулярные белки построены из прямых участков вторичных структур, которые при соединении друг с другом резко меняют направление, формируя трехмерный клубок. Волокнистые протеины состоят из одного элемента, повторяющегося много раз.

Особенности фибриллярных протеинов

Разнообразие фибриллярных белков значительно меньше, чем глобулярных. Эта группа представляет собой специализированную фракцию протеинов, выполняющих преимущественно структурные функции. При этом фибриллярные белки работают на макроуровне, формируя крупные надмолекулярные комплексы.

Волокнистые протеины были идентифицированы только у животных. Эти белки выполняют функцию опорных компонентов некоторых тканей. Такая биологическая роль предъявляет повышенные требования к прочности и упорядоченности построения молекул. По этой причине фибриллярная структура белка отличается большей стабильностью по сравнению с глобулой.

Волокнистые протеины участвуют в формировании жестких структур, таких как:

  • соединительная ткань;
  • сухожилия;
  • мышечные волокна.

Эти белки входят в состав различных покровных образований (эпидермис, волосы, шерсть и т. д.), выполняя защитные функции.

В естественной физиологической среде фибриллярные белки не присутствуют в растворе. Однако, если искусственно смешать молекулы волокнистого протеина с водой, образуется очень вязкая масса.

Примеры фибриллярных и глобулярных белков

К глобулярным белкам можно отнести все протеины, растворенные в межклеточной и внутриклеточной средах, а также в плазме крови. Сюда относят ферменты, белковые гормоны, факторы транскрипции, иммуноглобулины и так далее. Классическим образцом глобулярного белка можно назвать гемоглобин.


Сферические протеины выполняют множество функций, тогда как волокнистые — только структурную. Типичным примером фибриллярных белков являются коллаген, эластин и кератины. К группе волокнистых протеинов относят также фиброин, из которого состоит шелковая нить, и фибрин, формирующийся при полимеризации фибриногена в процессе свертывания крови.


Коллаген

Коллаген — самый распространенный фибриллярный протеин многоклеточных животных. Он входит в состав соединительной ткани, обеспечивая ее прочность и эластические свойства. Этот белок присутствует в:

  • хрящах;
  • дерме;
  • сухожилиях;
  • органическом матриксе костей;
  • стенках сосудов;
  • органическом материале костной ткани.

Коллаген состоит из трех аминокислотных цепей, скрученных в спираль и соединенных друг с другом ковалентными связями. Структурные единицы этого белка называются тропоколлагенами. Последние соединяются друг с другом концами, смещенными друг относительно друга на расстояние в 67 нанометров.

В зависимости от локализации в организме различают 28 типов коллагена. У всех разновидностей обязательно присутствует хотя бы один домен с тройной спиралью. Коллаген составляет основу всех типов соединительной ткани. Структурные компоненты этого белка образуют очень прочные фибриллы, которые способны выдерживать значительные нагрузки.


Коллаген выполняет опорные и защитные функции, а также обеспечивает эластичность тканей. Однако молекулы этого протеина не обладают способностью растягиваться. Резиноподобные свойства характерны для другого белка, также присутствующего в соединительных тканях, — эластина.

Кератины

Выделяют 2 основных разновидности кератинов: альфа и бета. В первую группу входят волокнистые белки, входящие в состав покровных образований позвоночных. Альфа-кератины составляют большую часть сухой массы:

  • эпидермиса;
  • волос и шерсти;
  • когтей и ногтей;
  • копыт, рогов, панцирей, игл и т. д.

Иными словами, кератины альфа-группы являются структурной основной для формирования производных кожи. Бета-разновидность этого типа волокнистых белков входит в состав паутины и шелка. Эти кератины более мягкие.

Жесткие белки альфа-группы выполняют защитные функции, а также обеспечивают прочность определенных анатомических частей (рога, копыта, клювы). За счет кератина происходит образование мозолей на поврежденной коже.

Эластин

Эластин — основной белковый компонент тканей, которые должны обладать высокими пластическими свойствами. Этот протеин входит в состав:

  • артерий;
  • легких;
  • стенок мочевого пузыря;
  • кожи;
  • эластичных связок;
  • хряща.

Как и другие фибриллярные белки, эластин строится из элементарных повторяющихся единиц. В этом случае в их качестве выступают небольшие молекулы весом 65 килодальтон, которые сшиваются с образованием нерастворимого комплекса. Каждая структурная единица называется протоэластином.


Спирохеты (speira - изгиб, chaite - волосы) - спирально извитые, обладающие активной подвижностью бактерии. Размеры спирохет колеблются в толщину от 0,1-0,3 мкм, в длину от 7-500 мкм. Движения разнообразные – от винтообразных до сгибательных.


Электронно-микроскопическое исследование позволило различить у спирохет протоплазматический цилиндр (тело клетки), аксиальную (опорную) нить и трехслойную наружную оболочку. Аксиальная нить находится в периплазматическом пространстве между наружной оболочкой и протоплазматическим цилиндром и состоит из отдельных фибрилл (эндофлагелл), число которых у разных видов различно: у трепонем и лептоспир – 3-4; у борелий – до 30. Каждая из фибрилл (эндожгутиков) закрепляется в области прикрепительных дисков на концах протоплазматического цилиндра и тянется к противоположному его концу, обвивая его и заканчиваясь свободно. Химический состав фибрилл аналогичен составу жгутиков.


В протоплазматическом цилиндре содержатся: нуклеоид, рибосомы, мезосомы, включения. Наружная оболочка (клеточная стенка) содержит тонкий слой пептидогликана, эластична и не обладает ригидностью. Эндоспор, капсул и экзожгутиков эти бактерии не образуют, грамотрицательны, в мазке располагаются беспорядочно.

Спирохеты относятся к порядку Spirochaetales, семейство Spirochaetaceae, которое включает три рода:

  1. Borrelia - имеет 3-10 неравномерных отлогих завитков, концы заострены, длиной 10-30 мкм. Движение толчкообразное, по Романовскому-Гимзе окрашиваются в сине-фиолетовый цвет (представитель Borrelia recurrentis – вызывает эпидемический возвратный тиф; Borrelia burgdorferi - вызывает лаймоборрелиоз).
  2. Treponema - имеет 8-14 туго закрученных, одинаковых по амплитуде завитков, длина 5-15 мкм. Движение плавное, медленное с вращением вокруг продольной оси, по Романовскому-Гимзе окрашиваются в бледно розовый цвет (представитель Treponema pallidum – возбудитель сифилиса).
  3. Leptospira - имеет до двух десятков мелких частых завитков, заканчивающихся крючком с пуговчатым утолщением, длиной 5-15 мкм. Движение очень активное, поступательное перемещение вперед, сгибание и вращение вокруг оси. По Романовскому-Гимзе окрашиваются слабо в розовато-сиреневый цвет (представитель Leptospira interrogans – возбудитель лептоспироза).

Методы исследования. В живом состоянии спирохеты изучают в фазово-контрастном микроскопе и темнопольном микроскопе, наблюдая за активным характерным движением спирохет, особенностями их формы.

Готовят препараты по Бурри (на темном фоне препарата становятся видимыми светлые извитые нити спирохет), окрашивают по Романовскому-Гимзе, по методу Морозова.

Спириллы


Спириллы (от греч speira - спираль) - имеют вид штопорообразно извитых клеток. К данной группе относится Spirillum minus - возбудитель содоку.


Спирилла. Окраска карболовым фуксином

Вибрионы


Вибрионы (от лат. vibrio - изгибаюсь) - короткие бактерии, изогнутость тела которых не превышает четверти оборота спирали (форма запятой). Представители: Vibrio cholerae, являющийся возбудителем холеры, а также V. fluvialis, V. vulnifucus - возбудители гастроэнтеритов и раневых инфекций.

Хеликобактерии, кампилобактерии


Кампилобактерии и хеликобактерии - извитые бактерии, изогнутость которых не превышает четверти оборота спирали. В мазках часто имеют форму "летящей чайки". Кампилобактерии (типовой представитель Campylobacter fetus) вызывают кампилобактериоз. Хеликобактерии (типовой представитель Helicobacter pylori) - хеликобактериоз.


Извитые формы микроорганизмов


Извитую форму имеют следующие микроорганизмы:

Вибрионы Хеликобактерии, кампилобактерии



Спириллы Спирохеты

Человеческий организм вмещает больше пятидесяти тысяч белков, которые разнятся между собой по структуре, строению и функциям. Они состоят из разных аминокислот, каждая из них занимает свое положение в цепи полипептидов. На сегодняшний день не существует единой классификации, которая учитывает разные параметры белков. Одни из них отличаются по форме молекул, здесь выделяют глобулярные и фибриллярные белки , о них и пойдет сегодня речь.


Белки глобулярные

Сюда относятся белки такие, в чьих молекулах наблюдаются цепи полипептидов, что имеют шароподобную форму. Такое строение белка связано с гидрофильными (имеют соединения водорода с водой) и гидрофобными (отталкивают воду) взаимодействиями. К данному виду относятся экзимы, гормоны, которые имеют белковую природу, иммуноглобулины, протеиды, альбумины, а также белки, которые выполняют регуляторную и транспортную функции. Это большая часть белков человека.

Экзимы

Экзимы (ферменты) находятся во всех клетках, с их помощью одни вещества превращаются в иные, так как они резко изменяют скорость превращений, способствуя распаду, расщеплению и синтезу веществ из продуктов распада. Во всех протекающих в организме реакциях они играют роль катализатора, регулируют обмен веществ. Известно более пяти тысяч разных ферментов. Все они выполняют до нескольких миллионов действий в секунду. Но они способствуют ускорению определенных реакций, оказывая действие только на определенные вещества. Ферменты удаляют погибшие клетки, шлаки и яды. Они являются катализаторами всех процессов в организме, а если их недостаточно, то у человека увеличивается вес за счет накопления отходов в теле.


Иммуноглобулины

Антитела (иммуноглобулины) представляют собой соединения белков, что появляются вследствие ответной реакции на поступление в организм бактерий и вирусов, а также токсинов. Они не дают им размножаться и нейтрализуют отравляющие вещества. Иммуноглобулины распознают и связывают чужеродные вещества, их уничтожают, образуя иммунные комплексы, а потом удаляют эти комплексы. Также они защищают организм от повторного инфицирования, так как антитела против болезней, которые были перенесены, длительный период сохраняются. Иногда в организме вырабатываются аномальные антитела, что нападают на собственный организм. Происходит это чаще всего из-за наличия аутоиммунных болезней. Таким образом, глобулярные и фибриллярные белки выполняют незаменимые функции в организме человека, поддерживая его нормальную жизнедеятельность.

Гормоны белковой природы

Сюда относятся гормоны поджелудочной, паращитовидной желез и гипофиза (инсулин, глюкагон, СТГ, ТТГ и другие). Одни регулируют углеводный обмен, увеличивая и понижая уровень сахара в крови, другие стимулируют рост клеток и деятельность щитовидной железы, третьи проводят регуляцию половых желез. Таким образом, все они регулируют физиологические функции. Эта их работа сводится либо к ингибированию, либо к активации систем ферментов.


Белки фибриллярные

Фибриллярные белки те, что имеют структуру в виде нити. Они не растворяются в воде и имеют массу молекулы очень большую, структура которой высокорегуляторная, она приходит в устойчивое состояние благодаря взаимодействиям между разными цепями полипептидов. Эти цепи находятся синхронно друг для друга на одной плоскости и создают так называемые фибриллы. К фибриллярным белкам относятся : кератины (волосы и иные роговые покровы), эластин (сосуды и легкие), коллаген (сухожилия и хрящи). Эти все белки выполняют в организме структурную функцию. Также сюда входит миозин (мышечное сокращение) и фибрин (свертывание крови). Этот вид белков выполняет опорные функции, которые придают прочности тканям. Таким образом, все типы фибриллярных белков выполняют незаменимую роль в анатомии и физиологии. Из них образуются защитные покровы человека, также они принимают участие в создании опорных элементов, поскольку входят в состав соединительной ткани, хрящей, сухожилий, костей и глубоких кожных слоев. В воде они не растворяются.


Кератины

В ходе возникновения различий между эпителиальными клетками, в процессе развития особи, они ороговевают, в них приостанавливается обмен веществ, наступает угасание клетки и она ороговевает. Клетки кожи вмещают кератин, он совместно с коллагеном и эластином образует влагонепроницаемый слой эпидермиса, кожа становится упругой и прочной. При натирании и давлении клетки вырабатывают кератин в огромных количествах с защитной целью. Вследствие этого появляются мозоли или наросты. Ороговевшие клетки кожи начинают беспрерывно отшелушиваться и заменяются новыми. Таким образом, бета-кератины играет большую роль для животного мира, так как представляют собой основной компонент рогов и клювов. Альфа-кератины характерны для организма человека, они являются составной частью волос, кожи и ногтей, а также входят в костный скелет, определяя его крепость.


Коллаген

Фибриллярные белки , в частности коллаген с эластином, являются компонентами соединительной ткани, они составляют основную долю хрящей, стенок сосудов, сухожилий и прочего. Коллаген представлен у позвоночных третьей частью всей массы белков. Его молекулы производят полимеры, которые называются коллагеновыми фибриллами. Они очень прочны, выдерживают огромную нагрузку и не растягиваются. Коллаген состоит из глицина, пролина и аланина, в нем нет цистеина и триптофана, а тирозин и метионин присутствуют здесь в малом количестве.

Также большую роль в образовании фибрилл играют гидроксипролин и гидроксилизин. Изменения в строении коллагена приводят к развитию наследственных заболеваний. Коллагены очень прочны, они не растягиваются. Для каждой ткани присущи свои типы коллагенов. Этот белок выполняет множество функций:

  • защитную, характеризующуюся обеспечением прочности тканей и их защитой от травм;
  • опорную, обусловленную скреплением органов и формированием их форм;
  • восстановительную, характеризующуюся регенерацией на клеточном уровне.

Также коллагены придают тканям эластичности, предотвращают развитие меланом кожи, участвуют в образовании оболочек клеток.


Эластин

Выше мы рассмотрели, какие белки относятся к фибриллярным . Еще сюда включают эластин, что имеет резиноподобные свойства. Его нити, которые находятся в легочной ткани, сосудистых стенках и связках, могут растягиваться во много раз больше своей обычной длины. После того, как нагрузка прекращает свое воздействие, они возвращаются в первичное положение. В составе эластина больше всего содержится пролина и лизина, гидроксилизина здесь нет. Таким образом, функции фибриллярных белков очевидны. Они играют большую роль в развития организма. Эластин обеспечивает растяжение и сжатие органов, артерий, сухожилий, кожи и прочего. Он помогает органам восстанавливать первоначальные размеры после растяжения. Если в организме человека недостает эластина, то у него образуются кардиоваскулярные изменения в виде аневризм, дефектов клапанов сердца и так далее.


Сравнение глобулярных и фибриллярных белков

Эти две группы белков разнятся между собой по форме молекул. Глобулярные белки имеют цепи полипептидов, что скручены очень плотно в овальные структуры. Ф ибриллярные белки имеют цепи полипептидов, которые находятся параллельно друг другу и образуют слой. По механическим свойствам ГБ не сжимаются и не распрямляются, а ФБ, наоборот, имеют такую способность. ГБ не растворяются в воде, а ФБ растворяются. Также эти белки разнятся по своим функциям. Первые выполняют функцию динамическую, а вторые – структурную. Глобулярные белки могут быть представлены в виде ферментов и антител, а также гемоглобина, инсулина и прочего. Примеры фибриллярных белков: коллаген, кератин, фиброин и прочие. Все эти виды белков незаменимы, недостаточное их количество в организме приводит к серьезным нарушениям и патологиям.

Таким образом, глобулярные и фибриллярные белки выполняют незаменимую роль в нормальной жизнедеятельности организма позвоночных. Они обеспечивают деятельность органов, тканей, кожи и прочего, выполняют множество функций, необходимых для полноценного развития организма.

Морфология спирохет. Спирохеты выделены в самостоятельный порядок Spirochaetales, который включает два семейства: Spirochaetaceae и Leptospiraceae. В семейство Spirochaetaceae входят 7 родов, из них наибольший интерес представляют патогенные для человека роды Borrelia и Treponema. В семейство Leptospiraceae включен род Leptospira

Спирохеты (spira – завиток, chaite – волос) – тонкие, длинные, извитые подвижные бактерии спиралевидной формы. Они состоят из наружной мембраны (клеточной стенки), которая окружает протоплазматический цилиндр с цитоплазматической мембраной и аксиальной нитью (аксостиль). Размеры клеток спирохет составляют 0,05-3х5-500 мкм.

Аксиальная нить находится под наружной мембраной и как бы закручивается вокруг протоплазматического цилиндра спирохеты, при этом образуются первичные завитки, что придает бактерии винтообразную форму. Аксиальная нить состоит из фибрилл – аналогов жгутиков бактерий, в состав которых входит сократительный белок флагеллин. Они прикреплены к концам клетки и направлены навстречу друг другу, другой конец фибрилл свободен. Число и расположение фибрилл варьирует у различных спирохет (от 1 до 100). Фибриллы участвуют в передвижении спирохет и придают клеткам вращательное, сгибательное, поступательное движение. При этом спирохеты образуют петли, завитки, изгибы, которые получили название вторичных завитков. Тип, число завитков, шаг, высота, угол наклона спирали играют играют важную систематическую роль. Спирохеты плохо воспринимают красители. Обычно их окрашивают по методу Романовского-Гимзы или серебрением, они грамотрицательны, но в процессе окраски по этому методу тело спирохет часто разрушается. В живом виде их исследуют с помощью фазово-контрастной или темнопольной микроскопии. Содержание Г+Ц в ДНК спирохет варьирует от 32 до 66 моль%. При неблагоприятных условиях среды спирохеты могут превращаться в цисты: спирохеты свертываются в клубок и выделяют слизь, которая, уплотняясь, образует оболочку цисты.

Патогенные спирохеты подразделяются на 3 рода: Borrelia; Treponema; Leptospira.

Спирохеты рода Borrelia имеют 3-8 крупных неравномерных, грубых завитков (рис. 4). Содержат много нуклеопротеидов, хорошо воспринимают анилиновые красители. По Романовскому-Гимзе окрашиваются в сине-фиолетовый цвет. Периплазматическая нить состоит из 15-20 параллельных фибрилл, сокращение которых вызывает сгибательно-поступательное, реже вращательно-поступательное движение. Боррелии вызывают болезнь Лайма, возвратный тиф и другие боррелиозы.

Род Treponema включает спиралевидно извитые нитевидные подвижные бактерии, имеющие размеры 0,1-0,5х5-20 мкм с периплазматической нитью, имеющей от 1 до 4 фибрилл. Завитки у трепонем мелкие, равномерные, количеством 8-12, содержание Г+Ц 32-50%. Окрашиваются по Романовскому-Гимзе в розовый цвет, так как содержат мало нуклеопротеидов и много липидов. Подвижны, движения медленные сгибательно-поступательные или хаотичные. Форма и движения хорошо видны в живом состоянии в темном поле зрения микроскопа. К облигатно-патогенным для человека относится Т.pallidum – возбудитель сифилиса.

Среди трепонем много сапрофитов, которые обитают в полости рта или в иле водоемов.

Представители рода Leptospira имеют завитки неглубокие, частые, в виде закрученной веревки. Концы этих нитевидных спирохет изогнуты наподобие крючков с утолщениями на концах. Имеют 1-2 фибриллы. Образуя вторичные завитки, они приобретают вид букв S или С, почти не окрашиваются анилиновыми красителями. Главный тип движения – поступательно-вращательный. По способу Романовского-Гимзы окрашиваются в красный цвет, но при фиксации резко меняются их характерные признаки. Изучают лептоспиры в темном поле, фазово-контрастном микроскопе. Патогенный представитель – Leptospira interrogans, возбудитель лептоспироза. Сапрофитные представители обитают в воде.

Микоплазмы – самые мелкие среди прокариотов, способных к самостоятельному метаболизму и репродукции. Относятся к отделу Tenericutes классу Mollicutes. Описано более 100 видов микоплазм. Они входят в семейство Micoplasmataceae. Патогенные для человека виды обнаружены у представителей рода Mycoplasma, Ureaplаsma.

Среди микоплазм встречаются как свободноживущие (сапрофиты), так и поражающие млекопитающих, птиц, насекомых. Размеры их мелкие (0,15-0,3 мкм). Микоплазмы полностью лишены клеточной стенки, имеют разнообразную форму: кокковидную, клювовидную, нитевидную, звездчатую. Эти формы видны при фазово-контрастной микроскопии.

Микоплазмы грамотрицательны, не имеют спор и капсул. Существуют микоплазмы, обладающие скользящей подвижностью (подобно амебе), некоторые обладают жгутиками. Клетки микоплазм окружены трехслойной липопротеиновой мембраной, которая состоит из стериновых липидов. Это определяет потребность микоплазм в стероле для роста и синтеза мембран. ЦПМ выполняет одновременно функции клеточной стенки и собственно мембраны и несет ряд важнейших физиологических функций: регулирует процессы метаболизма; энергетический обмен; рецепцию токсинов; обеспечивает адсорбцию эритроцитов, сперматозоидов, эпителиальных клеток. Отсутствие клеточной стенки определяет следующие отличительные свойства: чрезвычайную пластичность; чувствительность к лизису под влиянием осмотического шока, алкоголя, детергентов; фильтруемость через мембранные фильтры; устойчивость к антибиотикам, действующим на клеточную стенку (пенициллину, цефалоспоринам).

На специальных питательных средах микоплазмы образуют колонии размерами 10-200 мкм, похожие на яичницу-глазунью (рис. 5). В зависимости от вида недостаток белков-ферментов ограничивает число метаболических путей, поэтому микоплазмы очень чувствительны к питательным средам, в состав которых должны входить пуриновые и пиримидиновые основания, аминокислоты, витамины, липиды, в том числе стеролы. Паразитируя в организме хозяина, микоплазмы потребляют эти вещества непосредственно из тканей хозяина.

M. pneumoniae и M. hominus вызывают заболевания верхних дыхательных путей – пневмонии. M. hominus, M. genitalium вызывают урогенитальные процессы: уретриты, цервициты, простатиты, часто с ними связано нарушение репродуктивной функции у мужчин и женщин.

Морфология риккетсий и хламидий. Риккетсии и хламидии входят в отдел Gracilicutes и составляют соответственно роды Rickettsia, Chlamidia и Chlamydophila. Они являются энергетическими облигатными внутриклеточными паразитами. У них отсутствует система регенерации АТФ. Они поражают членистоногих, птиц, животных и человека. Их не культивируют на искусственных питательных средах. Они размножаются: в желточном мешке куриного эмбриона, в организме экспериментальных животных, в тканевых культурах.

Риккетсии названы в честь американского ученого Риккетса, который описал возбудителя риккетсиоза. Имеют все структуры, присущие прокариотам: клеточную стенку (в ней содержится мурамовая кислота), нуклеоид, рибосомы. Спор, жгутиков, капсул не имеют.

Грамотрицательны, окрашиваются по Романовскому-Гимзе в лиловый цвет, по Здродовскому (аналог метода Циль-Нильсена) – в красный. Риккетсии полиморфны, т. е. имеют различные морфологические формы: кокковидные (0,5 мкм); палочковидные (1,5 мкм); бациллярные (2-4 мкм); нитевидные (10-40 мкм).

Размножаются риккетсии простым делением, а нитевидные формы – дроблением. Вызывают сыпной тиф идругие риккетсиозы.

Хламидии (сhlamydis – плащ). Хламидии выделены в отдельный порядок Chlamydiales, который включает 4 семейства. Ведущие патогенные для человека представители хламидий сосредоточены в семействах Chlamydiaceae и Parachlamydiaceae, включающие, соответственно, роды Chlamydia и Chlamydophila. Основными, наиболее важными в патологии человека представителями этих родов являются C. psittaci, C. pneumoniae, C. trachomatis.

Хламидии грамотрицательные, очень мелкие (0,5 мкм), сферической формы микроорганизмы с облигатным внутриклеточным паразитизмом. Спор, капсул, жгутиков не образуют. Биологическое своеобразие хламидий состоит в энергозависимом паразитизме и уникальном цикле развития. Имеются 2 стадии жизненного цикла. Одна – инфекционная стадия – элементарные тельца (ЭТ), она приспособлена к внеклеточному существованию; другая – ретикулярные тельца (РТ) – внутриклеточная неинфекционная форма, лабильна, обладает выраженной метаболической активностью.

Элементарные тельца имеют размер 0,3 мкм, содержат нуклеоид, в клеточной стенке имеется слой – аналог пептидогликана грамотрицательных бактерий. ЭТ проникают в клетку при фагоцитозе. Из поверхностных мембран клетки хозяина вокруг ЭТ образуется вакуоль и ЭТ превращаются в крупные ретикулярные тельца (диаметр 0,5-1 мкм). Внутри образованной вакуоли РТ многократно делятся. В конечном счете вакуоль через 8-12 циклов деления заполняется этими частицами и превращается в микроколонию (включение). На последней генерации из РТ образуются ЭТ нового поколения. Затем мембрана, которая окружает микроколонию, разрушается, и хламидии выходят в цитоплазму, а далее за пределы клетки. Диагностическое значение имеет обнаружение цитоплазматических включений РТ или мелких ЭТ, которые отличаются от ядра клетки и цитоплазмы по цвету и внутренней структуре. Хламидии вызывают трахому, орнитоз, венерический лимфогранулематоз, бленнорею с включениями.

Актиномицеты. Тело акциномицетов имеет форму тонких (0,2-2 мкм) ветвящихся, разделенных перегородками, нитей (гифы). Гифы мицелия могут быть прямыми или спиралевидными. Кроме мицеллярной, встречаются палочковидные и кокковидные формы. От грибов отличаются отсутствием ядра. Как и другие бактерии, они имеют нуклеоид, клеточную стенку, в которой содержится пептидогликан и нет хитина и целлюлозы; чувствительны к антибактериальным препаратам, в частности к пенициллинам.

Среди актиномицетов бывают подвижные и неподвижные виды. Капсул не образуют, грамположительны. Размножаются с помощью спор, которые формируются в результате сегментации и фрагментации гиф. Описан половой способ размножения. Мицелярные виды на плотных питательных средах образуют субстратный (врастающий в среду) и воздушный мицелий.

Основная среда обитания акциномицетов – почва, могут встречаться в воде, воздухе, на предметах, на кожных покровах человека и животных. Играют важную роль в круговороте веществ и энергии, в плодородии почвы, являются продуцентами антибиотиков, витаминов, ферментов.

В патологии человека имеют значение семейства: Actinomycetaceae, Nocardiaceae, Mycobacteriaceae.

Морфология грибов. Грибы являются эукариотами, имеют ядро с ядерной оболочкой, цитоплазму с органеллами, цитоплазматическую мембрану, мощную клеточную стенку, состоящую из гликана, целлюлозы, хитина, белка, липидов и др. Это микроскопические и макроскопические (свободно живущие, симбиотические и паразитические) организмы, которые находятся в биосфере повсеместно. Свободноживущие грибы обитают в больших количествах в воде, почве и воздухе. Симбионты сожительствуют с водорослями (лишайники), растениями.

Грибы состоят из длинных тонких нитей – гиф, которые, сплетаясь, образуют мицелий (рис. 6). Гифы низших грибов – фикомицетов – не имеют перегородок. У высших грибов – эумицетов – гифы разделены перегородками, а мицелий многоклеточный.

Грибы размножаются спорами, половым и бесполым способами, вегетативным путем (почкованием или фрагментацией гиф).

Грибы, которые размножаются половым и бесполым путем, относятся к совершенным. Несовершенными называются грибы, у которых отсутствует половой путь размножения.

Бесполое размножение у низших грибов происходит с помощью эндогенных спор, которые созревают в головке – спорангии, и экзогенных спор – конидий, которые формируются на концах плодоносящих гиф.

Среди грибов выделяют зигомицеты; аскомицеты; базидиомицеты; дейтеромицеты.

Широко распространен Mycor mucedo – одноклеточный гриб. Он относится к зигомицетам.Мицелий разветвлен, но не септирован, имеет спорангиеносец со спорангием, в котором находятся эндоспоры. Мукор размножается половым и бесполым путем, вызывает мукоромикозы, поражает легкие, печень, кожу, головной мозг. Мукор обитает в почве, воздухе, пищевых продуктах.

Аскомицеты или сумчатые грибы объединяют группу грибов, которые имеют септированный мицелий. Название получили из-за органа плодоношения – сумки или аска, которые содержат 4 или 8 гаплоидных половых спор. К аскомицетам относятся представители родов Aspergillus, Penicillium, которые отличаются особенностями формирования плодоносящих гиф.

Аспергилловая плесень (род Aspergillus) – мицелий септирован, конидиеносец одноклеточный, заканчивается утолщением, от которого отходят экзоспоры, напоминающие струйки воды, вытекающие из лейки. Обитают эти грибы на хлебе, варенье. У человека вызывают аспергиллезы. Поражаются роговица глаза, кожа.

Пеницилловая плесень (род Penicillium) – кистевик – мицелий и конидиеносец септированный, т. е. многоклеточный. Плодоносящее тело имеет вид кисточки. Конидиеносец разветвлен, на концах находятся стеригмы, от них отшнуровываются экзоспоры. Грибок находится в кормах, молочных продуктах, варенье.

Пенициллы могут вызывать заболевания – пенициллиозы. Многие виды аскомицетов являются продуцентами антибиотиков.

Представителями аскомицетов являются дрожжи и дрожжеподобные грибы – одноклеточные грибы, которые утратили способность к образованию истинного мицелия. Дрожжи имеют овальную форму клеток, диаметр которых 3-15 мкм. Они размножаются почкованием, бинарным делением или половым путем с образованием аскоспор. Дрожжи используют при биотехнологических процессах. Заболевания, которые вызывают некоторые виды дрожжей – дрожжевые микозы.

Дрожжеподобные грибы рода Candida поражают кожу, слизистые оболочки, внутренние органы (кандидоз). Они имеют овальную форму, диаметр 2-5 мкм, делятся почкованием, образуя псевдомицелий – длинные почкующиеся клетки вытянуты в длину и узким основанием соприкасаются друг с другом. На концах клеток находятся хламидоспоры.

К аскомицетам относится возбудитель эрготизма – его вызывает спорынья, которая паразитирует на злаках.

Базидиомицеты – это шляпочные грибы, которые имеют септированный мицелий.

Различают также несовершенные грибы (fungi imperfecti или дейтеромицеты). Они размножаются бесполым путем. Имеют многоклеточный мицелий, но нет конидиеносцев. Паразитируют в зерновых культурах. Вызывает трихофитию, микроспорию, паршу.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.