Вирусы от лат яд

ВИРУСЫ (от лат. virus — яд), облигатные внутриклеточные паразиты, вызывающие инфекц. заболевания человека, позвоночных животных, членистоногих, гельминтов, бактерий, простейших, плесневых грибов, растений. В., поражающие бактерии, наз. бактериофагами. В. являются неклеточными формами жизни, обладающими собственным геномом и способными к воспроизведению лишь в клетках более высокоорганизованных организмов. Для В. характерны две формы существования; внеклеточная, или покоящаяся (вирионы, вироспоры, вирусная частица), и внутриклеточная, или размножающаяся, репродуцирующаяся (комплекс вирус — клетка”). Связь между этими формами существования В. осуществляется через нуклеиновую кислоту вириона (носитель генетич. информации), которая индуцирует в заражённой клетке вирусоспецифич. синтезы и образование дочерних вирионов. В. — паразиты на генетич. уровне, т. к. их взаимодействие с клеткой — это прежде всего взаимодействие вирусного и клеточного геномов, результатом чего может быть либо острая вирусная инфекция, иногда с цитоцидным эффектом, либо хронич. инфекция, которая в ряде случаев может приводить к клеточной трансформации. Внутриклеточный паразитизм В. обусловлен отсутствием у них собственных белоксинтезирующих систем. Для своего воспроизведения В. используют синтетич. аппарат клетки.

Различные виды В. на внеклеточной стадии существования характеризуются размерами от 15—18 до 300—350 нм. Наиболее крупные В. (возбудители оспы, осповакцины) различимы в световом микроскопе, но в основном В. можно увидеть лишь в электронном микроскопе.

Химический состав и структура вирусных частиц. Простые В. состоят только из белка и нуклеиновых кислот. У сложных, более крупных В., поражающих высших животных, наряду с этими компонентами содержатся липиды (в форме гликопротеидов) и белки-ферменты. В отличие от клеточных форм жизни, В. содержат в вирионе один из двух типов нуклеиновых кислот: РНК или ДНК. Нуклеиновые кислоты у В. представлены двухспиральной ДНК (В. оспы, герпеса) или односпиральной РНК (В. полиомиелита, ящура), однако существуют В. с односпиральной ДНК (парвовирусы) и В. двухспиралыюй РНК (реовирусы). Структура генома у многих В. изучена недостаточно. Установлено, что гены (определённое число нуклеотидов) расположены в нуклеиновой кислоте в определённой линейной последовательности, осн. их функция — программирование синтеза вирусоспецифических (функциональных и структурных) белков. Нуклеиновая кислота в вирусной частице окружена защитной белковой оболочкой (капсидом). Нуклеиновая кислота с капсидом наз. нуклеокапсидом. У просто организованных В. термины "нуклеокапсид" и "вирусная частица" (вирион) тождественны. У сложно устроенных В. наряду с капсидом имеется ещё одна или неск. внешних (белковых или липидных) оболочек (суперкапсид). Белковая оболочка В. построена из идентичных полипептидных цепей, уложенных в определённом порядке, обусловливающем тип симметрии (спиральный или кубический). Капсид предохраняет нуклеиновую кислоту В. от неблагоприятных воздействий внешней среды; обеспечивает адсорбцию В. на клетке хозяина благодаря сродству рецепторов, расположенных на поверхности капсида и клетки. С капсидом связаны также антигенные и иммуногенные свойства В. С помощью электронного микроскопа в капсиде выявляют комплексные группы его структурных единиц — капсомеры. Их число у различных В. колеблется от 12 до неск. сотен и более (рис.).

Размножение (репродукция) В. происходит в клетках хозяина и включает неск.стадий: адсорбцию и проникновение В. в клетку; синтез вирусоспецифич.ферментов — "ранних" белков, необходимых для воспроизведения (репликации) вирусной нуклеиновой кислоты; репликацию вирусной нуклеиновой кислоты; синтез информационных РНК (при репродукции ДНК-содержащих В.), кодирующих поздние белки, входящие в состав вирионов, а также формирование вирионов; освобождение дочерних вирусных частиц во внешнюю среду.

В. имеют или собственные вирусоспецифич. ферменты репликации, заключённые в структуре вириона, или ферменты, закодированные в вирусном геноме и появляющиеся в инфицированной клетке перед началом репликации вирусной ДНК или РНК. Напр., у В. оспы в составе вирионов имеются собств. высокоснецифич. транскриптазы; в составе онкорнавирусов содержится обратная транскриптаза. У аденовирусов репликация ДНК обеспечивается клеточными ферментами. В. могут репродуцироваться в организме естественно восприимчивых животных, куриных эмбрионах, культурах клеток и переживающих эксплантатах органов и тканей (В. не удаётся культивировать на искусств. питательных средах). Как в естеств., так и экспериментальных условиях спектр патогенности В. различен. Имеются В. полипатогенные, поражающие широкий круг животных (В. бешенства, болезни Ауески), и монопатогенные (В. чумы свиней, инфекц. ларинготрахеита кур и др.). Между этими представителями имеется обширная группа В. различных классов и семейств, обладающих разным спектром патогенности.

Классификация вирусов животных.

Вирусы, основные представители.

ДНК-содержащие.

Вирусы крыс, мышей, свиней, кошек, кр. рог. скота и др.

Аденоассоциированные вирусы типов 1, 2, 3, 4.


Вирус (лат. virus — яд) — неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей (вирусы бактерий обычно называют бактериофагами). Обнаружены также вирусы, способные реплицироваться только в присутствии других вирусов (вирусы-сателлиты).

Со времени публикации в 1892 году статьи Дмитрия Ивановского, описывающей небактериальный патоген растений табака, и открытия в 1898 году Мартином Бейеринком вируса табачной мозаики были детально описаны более 6 тысяч видов вирусов, хотя предполагают, что их существует более ста миллионов. Вирусы обнаружены почти в каждой экосистеме на Земле, они являются самой многочисленной биологической формой. Изучением вирусов занимается наука вирусология, раздел микробиологии.

У животных вирусные инфекции вызывают иммунный ответ, который чаще всего приводит к уничтожению болезнетворного вируса. Иммунный ответ также можно вызвать вакцинами, дающими активный приобретённый иммунитет против конкретной вирусной инфекции. Однако некоторым вирусам, в том числе вирусу иммунодефицита человека и возбудителям вирусных гепатитов, удаётся ускользнуть от иммунного ответа, вызывая хроническую болезнь. Антибиотики не действуют на вирусы, однако было разработано несколько противовирусных препаратов.

К концу XIX века было известно, что вирусы обладают инфекционными свойствами, способны проходить через фильтры и нуждаются в живом хозяине для размножения. В то время вирусы в исследовательских целях культивировали только в растениях и животных. В 1906 году Росс Грэнвилл Гаррисон изобрёл метод выращивания тканей в лимфе, и в 1913 году Штейнард, Израэли и Ламберт использовали этот метод при выращивании вируса осповакцины на фрагментах ткани роговицы морских свинок. В 1928 году Г. Б. Мэйтланд и М. К. Мэйтланд вырастили вирус осповакцины на суспензии из измельчённых куриных почек. Этот метод не применялся широко до конца 1950-х годов, когда в больших масштабах стали выращивать полиовирус для производства вакцины.

Другое крупное достижение принадлежит американскому патологу Эрнесту Уильяму Гудпасчеру; в 1939 г он вырастил вирус гриппа и несколько других вирусов в оплодотворённых куриных яйцах. В 1949 году Джон Франклин Эндерс, Томас Уэллер и Фредерик Роббинс вырастили полиовирус на культуре клеток зародыша человека. Это был первый вирус, выращенный не на тканях животных или яйцах. Эта работа дала возможность Джонасу Солку создать эффективную полиовакцину (вакцину против полиомиелита).

Первые изображения вирусов были получены после изобретения электронного микроскопа немецкими инженерами Эрнстом Руской и Максом Кноллем. В 1935 году американский биохимик и вирусолог Уэнделл Мередит Стэнли тщательно изучил вирус табачной мозаики и обнаружил, что он по большей части состоит из белка. Спустя короткое время этот вирус был разделён на белковую и РНК-составляющую. Вирус табачной мозаики был кристаллизован первым среди вирусов, что позволило многое узнать о его структуре. Первая рентгенограмма кристаллизованного вируса была получена Берналем и Фэнкухеном в конце 1930-х годов. На основании полученных ею изображений Розалинд Франклин в 1955 году определила полную структуру вируса. В том же году Хайнц Френкель-Конрат и Робли Уилльямс показали, что очищенная РНК вируса табачной мозаики и белок оболочки способны к самосборке в функциональный вирус. Это позволило им предположить, что подобный механизм лежит в основе сборки вирусов внутри клеток-хозяев.

Вторая половина XX века стала периодом расцвета вирусологии. В то время было открыто свыше 2000 видов вирусов животных, растений и бактерий. В 1957 году были открыты лошадиный артеривирус и возбудитель вирусной диареи коров (пестивирус). В 1963 году Барух Бламберг открыл вирус гепатита B, а в 1965 году Хоуард Темин описал первый ретровирус. В 1970 году Темин и Дейвид Балтимор независимо друг от друга описали обратную транскриптазу, ключевой фермент, с помощью которого ретровирусы синтезируют ДНК-копии своих РНК. В 1983 году группа учёных во главе с Люком Монтанье из Института Пастера во Франции впервые выделила ретровирус, известный сейчас как ВИЧ.

В 2002 году в Нью-Йоркском университете был создан первый синтетический вирус (вирус полиомиелита).

Вирусы найдены везде, где есть жизнь, и, вероятно, вирусы существуют с момента появления первых живых клеток[37]. Происхождение вирусов неясно, поскольку они не оставляют каких бы то ни было ископаемых остатков, а их родственные связи можно изучать только методами молекулярной филогенетики.

Бактерии первым обнаружил почти 300 лет назад Антон ван Левенгук. А в конце XIX века работы Роберта Коха, Луи Пастера и многих других ученых доказали, что значительная часть опасных болезней — туберкулез, чума, холера и многие другие, вызываются микроскопическими болезнетворными бактериями. Но, с другой стороны, возбудители некоторых весьма распространенных болезней выделить и рассмотреть не удалось. Оспа, корь — какой возбудитель их вызывал?


Возбудители этих болезней были настолько маленькими, что в обычный микроскоп их было не видно. Лишь в XX веке были созданы микроскопы намного более мощные. Вот в такой электронный микроскоп болезнетворные агенты, вызывавшие, например, оспу, удалось обнаружить.

Однако при помощи косвенных методов, отслеживая возбудители болезней по их воздействию на клетки, болезнетворные агенты были открыты задолго до изобретения электронного микроскопа.

Пытаясь доказать или опровергнуть теорию, что ряд заболеваний, возбудителей которых обнаружить не удалось, все же вызываются возбудителями, невидимыми из-за их микроскопических размеров, в 1884 году французский микробиолог Шарль Шамберлан создал фильтр, поры которого были меньше самой маленькой бактерии.

Проверяли фильтр на растениях, зараженных так называемой табачной мозаикой. Было установлено, что раствор больных листьев, пропущенный через бактериальный фильтр Шамберлана, сохранял болезнетворный агент.

Но в 1898 году его опыты повторил голландец Мартин Бейеринк. Он провел более обширное научное исследование уже заболевших листьев табака, установив, что агент размножается, уничтожая клетки растения. И пришел к выводу, что, несмотря на свои размеры, намного меньше обычной клетки, агент — это все же какой-то болезнетворный организм.

Сам Бейеринк считал, что открытый им инфекционный агент является жидким — ну разве может быть живым что-то меньше бактерии? Он назвал найденное им — Contagium vivum fluidum (лат. растворимый живой микроб), и предложил назвать этот странный агент вирусом.

Впоследствии, используя эту методику, ученые выяснили, что ящур, бешенство, корь, оспа, грипп, полиомиелит и ряд других заболеваний вызывают вирусы.

Вирусы, которые размножаются посредством перепрограммирования и уничтожения клеток, назвали бактериофагами.

К тому времени было уже известно, что вакцинация помогает бороться даже с вирусными заболеваниями. Началась разработка новых вакцин для лечения болезней, вызванных и различного вида бактериями и вирусами. От эпидемий оспы, кори и огромного количества других болезней очень помогла вакцинация.

  • Сегодня предполагают, что существует около 100 миллионов видов вирусов, притом что ученым пока известны только около 6000 видов.

Какие загадки ученым задал этот новый класс болезнетворных организмов? Когда в 1931 году был изобретен электронный микроскоп, ученые получили долгожданную возможность, наконец, увидеть вирусы. И они были удивлены тем, как выглядел новый вид инфекционных агентов. Их тщательное изучение уже в 1930-е годы показало, что они по большей части состоят из белковой оболочки, внутри которой спрятана их РНК-составляющая.

Ротавирус, компьютерная реконструкция на основе данных электронной криомикроскопии
Фото: ru.wikipedia.org

Вирус приближается к клетке, прикрепляется к ней и, пробив ее оболочку, выстреливает внутрь свою РНК. Клетка получает новый код действия, она перестает функционировать по своему назначению и начинает воспроизводить вирусы. Когда для этого воспроизводства у клетки истощаются ресурсы, она погибает и разваливается. А множество сделанных ею вирусов начинают свой поиск — к кому бы прикрепиться. Процесс саморазмножения вируса в клетке называется лизисом.

Все три гипотезы друг друга дополняют и ни одна не является всеобъемлющей и объясняющей все особенности функционирования вирусов.

Какие вирусные заболевания мы знаем?

  • Среди вирусных заболеваний есть как легкие — простуда, грипп, так и смертельно опасные — СПИД, гепатиты В и С, оспа, корь.

Иногда те заболевания, которые нам кажутся легкими, могут протекать очень тяжело и оказаться смертельными.

Так каждую зиму миллионы людей болеют гриппом. Как только почувствовал себя заболевшим — сразу к врачу, он даст больничный максимум на две недели, пропишет лекарства, но честно скажет, что главное — отлежаться, укрыться теплым одеялом и побольше пить горячего и с кислинкой.

Смертельная геморрагическая лихорадка Эбола, СПИД, оспа — как от них спастись? Сегодняшняя медицина для защиты от некоторых из них может предложить вакцинацию. А от некоторых и вакцины не существует, единственный способ не заболеть — остерегаться, принимать все возможные меры предосторожности, чтобы не подхватить заболевание. При эпидемиях таких болезней объявляют карантин.

В наше время наиболее эффективными медицинскими мерами против вирусных инфекций являются вакцинации, создающие иммунитет к инфекции, и противовирусные препараты, избирательно ингибирующие репликацию вирусов. Уничтожать сами вирусы мы не умеем. Но в общем, пока мы справляемся с этой угрозой.

Так жив или мертв этот сверхмикрокорабль?

Вирусы

Вирусы(от лат. virus — яд) — это мельчайшие организмы (не более 200—300 нм), невидимые в световой микроскоп, не имеющие клеточного строения, лишенные собственных систем энергообеспечения, отличающиеся паразитическим способом существования, т. е. являющиеся внутриклеточными паразитами. Детальное изучение вирусов стало возможным с развитием электронной микроскопии, биохимии, молекулярной биологии.

Вирусы — сборная группа, не имеющая общего предка.

Механизм инфицирования.Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на следующие этапы.

Проникновение в клетку.На этом этапе вирусу необходимо доставить внутрь клетки свою генетическую информацию. Некоторые вирусы привносят также собственные белки, необходимые для ее реализации. Различные вирусы для проникновения в клетку используют разные стратегии. Вирусы также различаются по локализации их репликации: часть вирусов размножается в цитоплазме клетки, а часть — в ее ядре.

Создание новых вирусных компонентов. Размножение вирусов в самом общем случае предусматривает три процесса:

— транскрипцию вирусного генома, т. е. синтез вирусной мРНК;

— трансляцию мРНК, т. е. синтез вирусных белков;

— репликацию вирусного генома.

У многих вирусов существуют системы контроля, обеспечивающие оптимальное расходование биоматериалов клетки-хозяина. Например, когда вирусной мРНК накоплено достаточно, транскрипция вирусного генома подавляется, а репликация, напротив, активируется.

Классификация вирусов.Систематику и таксономию вирусов кодифицирует и поддерживает Международный комитет по таксономии вирусов (International Committee on Taxonomy of Viruses, ICTV), поддерживающий также и таксономическую базу The Universal Virus Database ICTVdB.

Форма представления генетической информации лежит в основе современной классификации вирусов. В настоящее время их подразделяют на ДНК- и РНК-содержащие вирусы.

К вирусам относятся бактериофаги — паразиты микроорганизмов. Они состоят из двух частей: призматической головки и хвостового отростка. Если добавить к микробам бактериофаг, действующий именно на данный вид микробов, через несколько минут его можно обнаружить на поверхности микробной клетки, к которой он прикрепляется отростком. Затем бактериофаг выделяет фермент, растворяющий оболочку бактерии в месте прикрепления отростка. Сквозь это отверстие ДНК, находящаяся в головке, попадает в клетку. Капсид остается снаружи. Под влиянием ДНК фага обмен веществ бактерии перестраивается, белоксинтезирующие системы бактерии образуют белки фага, происходит репликация фаговой ДНК. Через 15-30 мин оболочка клетки разрывается, и огромное количество фагов выходит в окружающую среду. Фаги заражают новые клетки, вызывая их лизис.

Значение вирусов. Вирусы вызывают ряд опасных заболеваний человека (оспу, гепатит, грипп, корь, полиомиелит, СПИД, рак и т. д.), растений (мозаичную болезнь табака, томата, огурца, карликовость, увядание земляники), животных (чуму свиней, ящур). Однако препараты соответствующих бактериофагов применяют для лечения бактериальных заболеваний — дизентерии и холеры.

Получение интерферона — особого клеточного белка, препятствующего размножению вирусов, — широко используют в медицине, особенно во время вспышек эпидемий гриппа. Это вещество универсального действия, активное по отношению ко многим вирусам, хотя чувствительность разных вирусов к нему неодинакова. Будучи продуктом самой клетки, интерферон полностью лишен токсического воздействия на нее. Сейчас применяют готовый интерферон, его можно синтезировать в клетках, культивируемых вне организма.

Бактерии

Строение бактерий.Подавляющее большинство бактерий (за исключением актиномицетов и нитчатых цианобактерий) одноклеточны. По форме клеток они могут быть шаровидными (кокки), палочковидными (бациллы, клостридии, псевдомонады), извитыми (вибрионы, спириллы, спирохеты), реже — звездчатыми, тетраэдрическими, кубическими, С- или О-образными. Обязательными клеточными структурами бактерий являются:

— цитоплазматическая мембрана (ЦПМ).

Прокариоты, в отличие от эукариот, не имеют в цитоплазме обособленного ядра. Вся необходимая для жизнедеятельности бактерий генетическая информация содержится и одной двухцепочечной ДНК (бактериальная хромосома), имеющей форму замкнутого кольца. Она в одной точке прикреплена к ЦПМ. ДНК в развернутом состоянии имеет длину более 1 мм. Бактериальная хромосома представлена обычно в единственном экземпляре, т. е. практически все прокариоты гаплоидны, хотя в отдельных случаях одна клетка может содержать несколько копий своей хромосомы. Деление хромосомы сопровождается делением клетки. Область клетки, в которой локализована хромосома, называется нуклеоидом; она не окружена ядерной мембраной. II связи с этим новосинтезированная мРНК сразу доступна для связывания с рибосомами, т. е. процессы транскрипции и трансляции могут протекать одновременно. Ядрышки нет.

Помимо хромосомы, в клетках бактерий часто находятся плазмиды — замкнутые в кольцо небольшие молекулы ДНК, способные к независимой репликации. Они содержат дополнительные гены, необходимые лишь в специфических условиях. В них кодируются механизмы устойчивости к отдельным лекарственным препаратам, способности к переносу генов при конъюгации, синтеза веществ антибиотической природы, способности использовать некоторые сахара или обеспечивать деградацию ряда веществ. То есть плазмиды действуют как факторы адаптации. В некоторых случаях гены плазмиды могут интегрировать в хромосому бактерии.

Рибосомы прокариот отличаются от таковых у эукариот имеют константу седиментации 70 S (у эукариот— 80 S).

У разных групп прокариот имеются локальные впячивания ЦПМ — мезосомы, выполняющие в клетке разнообразные функции и разделяющие ее на функционально различные части. Считается, что мезосомы принимают участие в делении бактерий. Когда на мембранах мезосом располагаются окислительно-восстановительные ферменты, они являются эквивалентами митохондрий клеток растений и животных. У фотосинтезирующих бактерий во впячивания мембран вмонтирован пигмент — бактериохлорофилл. С его помощью и осуществляется бактериальный фотосинтез.

С внешней стороны от ЦПМ находятся несколько слоев (клеточная стенка, капсула, слизистый чехол), называемых клеточной оболочкой, а также поверхностные структуры (жгутики, ворсинки, пили).

У бактерий существует два основных типа строения клеточной стенки, свойственных грамположительным и грамотрицательным видам. Клеточная стенка грамположительных бактерий представляет собой гомогенный слой толщиной 20-80 нм, построенный в основном из пептидогликана муреина с большим количеством тейхоевых кислот и небольшим количеством полисахаридов, белков и липидов. У грамотрицательных бактерий пептидогликановый слой неплотно прилегает к ЦПМ и имеет толщину лишь 2-3 нм. Он окружен наружной мембраной, имеющей, как правило, неровную, искривленную форму.

С внешней стороны от клеточной стенки может находиться капсула — аморфный слой гидратированных полисахаридов, сохраняющий связь со стенкой. Слизистые слои не имеют связи с клеткой и легко отделяются, чехлы же не аморфны, а имеют тонкую структуру.

Многие бактерии способны к активному движению с помощью жгутиков — выростов цитоплазмы.

Размножение бактерий.Бактерии не имеют полового процесса и размножаются лишь равновеликим бинарным поперечным делением или почкованием. Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящих к образованию от 4 до 1000новых клеток под оболочкой материнской клетки).

У прокариот может происходить горизонтальный перенос генов. При конъюгации клетка-донор в ходе непосредственного контакта передает клетке-реципиенту часть своего генома (в некоторых случаях — весь геном). Участки ДНК донорной клетки могут обмениваться на гомологичные участки ДНК реципиента. Вероятность такого обмена значима только для бактерий одного вида.

Бактериальная клетка может поглощать и свободно находящуюся в среде ДНК, включая ее в свой геном. Данный процесс носит название трансформации. В природных условиях обмен генетической информацией протекает с помощью бактериофагов (трансдукция). При горизонтальном переносе новых генов не образуется, однако осуществляется создание разных генных сочетаний. Эти свойства бактерий очень важны для генетической инженерии.

Спорообразование у бактерий.Некоторые бактерии образуют споры. Их формирование характерно для особо устойчивых форм с замедленным метаболизмом и служит для сохранения в неблагоприятных условиях, а также для распространения. Споры могут сохраняться продолжительное время, не теряя жизнеспособности. Так, эндоспоры многих бактерий способны выдерживать 10-минутное кипячение при 100°С, высушивание в течение тысячи лет и, по некоторым данным, сохраняются в жизнеспособном состоянии в почвах и горных породах миллионы лет.

Метаболизм бактерий.За исключением некоторых специфических моментов, биохимические пути, по которым осуществляется синтез белков, жиров, углеводов и нуклеотидов, у бактерий схожи с таковыми у других организмов. Однако по числу возможных биохимических путей и, соответственно, по степени зависимости от поступления органических веществ извне бактерии различаются. Часть бактерий может синтезировать все необходимые им органические молекулы из неорганических соединений (автотрофы), другие же требуют готовых органических соединений, которые они способны лишь трансформировать (гетеротрофы).

Значение бактерий.Бактерии-сапрофиты играют большую роль в круговороте веществ в природе, разрушая в экосистемах мертвый органический материал. Хорошо известна их роль во всех биогеохимических циклах на нашей планете. Бактерии принимают участие в круговоротах химических элементов (углерода, железа, серы, азота, фосфора и др.), в процессах почвообразования, определяют плодородие почв.

Биотехнологические функции, выполняемые бактериями, разнообразны. Их применяют при производстве различных веществ: уксуса (Gluconobacter suboxidans), молочнокислых напитков и продуктов (Lactobacillus, Leuconostoc), а также микробных инсектицидов (Bacillus thuringiensis) и гербицидов, белков (Methylomonas), витаминов (Clostridium — рибофлавин); при переработке отходов, получении бактериальных удобрений, растворителей и органических кислот, биогаза и фотоводорода. Широко используется такое свойство некоторых бактерий, как диазотрофность, т. е. способность к фиксации атмосферного азота.

Благодаря быстрому росту и размножению, а также простоте строения, бактерии активно применяют в научных исследованиях по молекулярной биологии, генетике и биохимии, в генно-инженерных работах при создании геномных клонотек и введении генов в растительные клетки (агробактерии). Информация о метаболических процессах бактерий позволила производить бактериальный синтез витаминов, гормонов, ферментов, антибиотиков и др.

Перспективными направлениями являются очистка с использованием бактерий почв и водоемов, загрязненных нефтепродуктами или ксенобиотиками, а также обогащение руд с помощью сероокисляющих бактерий.

Нельзя забывать о том, что отдельные виды бактерий вызывают опасные заболевания у человека (чуму, холеру, туберкулез, брюшной тиф, сибирскую язву, ботулизм и др.), животных и растений (бактериозы). Некоторые виды бактерий могут разрушать металл, стекло, резину, хлопок, древесину, масла, лаки, краски.

Вирус (лат. virus - яд) - неклеточная форма жизни, мельчайшие болезнетворные микроорганизмы, не видимые в микроскоп. Они значительно меньше бактерий: легко проходят через бактериальные фильтры.

Вирусы способны размножаться только внутри живых клеток, до проникновения в них вирусы не имеют признаков жизни: пассивно перемещаются во внешней среде, ожидая встречи с клеткой-мишенью.


В 1892 году Ивановский Д.И. в ходе изучения мозаичной болезни табака обнаружил, что болезнь вызывается мельчайшими субстанциями, которые проходят через бактериальный фильтр, то есть были меньше бактерий. Вирусы впервые увидели в электронный микроскоп в 1939 году (спустя 19 лет со смерти Ивановского), однако считается, что именно Ивановский положил начало вирусологии как науке.


Вирусы выделяют в отдельное, пятое царство. Несмотря на их кажущуюся безжизненность, от неживой материи их отличают следующие черты:

  • Наличие наследственности и изменчивости
  • Способность к репродукции (воспроизведению себе подобных)

Рекомендую обратить особое внимание на черты, которые отличают вирусы от живых организмов:

    Неживое (инертное) состояние

Вне клетки хозяина находятся в неживом состоянии, ожидая внедрения. Вирусы - облигатные внутриклеточные паразиты.

У вирусов отсутствует обмен веществ с внешней средой (метаболизм).

Не имеют клеточной мембраны, ограничивающих их от внешней среды, и, соответственно, клеточного строения.

Не делятся, не размножаются половым путем

У вирусов отсутствует половое размножение и деление. Попав в живую клетку, вирус встраивает свою нуклеиновую кислоту (РНК/ДНК) в наследственный материал клетки-мишени. В результате клетка начинает синтезировать вирусные белки (новые вирусы): так увеличивается численность вирусов.

Вирусы не растут, не увеличиваются в размерах. Стратегия их жизни - безудержное размножение.

Если мы заглянем в клетку, инфицированную вирусом, то от вируса мы увидим только один элемент - его нуклеиновую кислоту (ДНК/РНК). Во внешней среде вирусы существуют в виде вирионов - полностью сформированных вирусных частиц, состоящих из белковой оболочки (капсида) и нуклеиновой кислоты внутри.

Носителем наследственной информации у вирусов может быть ДНК, РНК. В связи с этим все вирусы подразделяются на ДНК- и РНК-содержащие.


Найдя клетку, на поверхности которой есть подходящий рецептор, вирус взаимодействует с ним и прикрепляется к мембране клетки. Путем эндоцитоза (образование вакуоли) вирус проникает внутрь клетки, выходит из вакуоли в цитоплазму. Наследственный материал (ДНК/РНК) вируса реализуется по схеме: ДНК ↔ РНК → белок.

Проникнув внутрь клетки (инфицировав ее), вирус реализует собственный генетический материал (ДНК/РНК) путем синтеза вирусного белка на рибосомах клетки хозяина. Клетка даже и не подозревает, что вирус встроил в ее РНК/ДНК свой генетический код - она принимает его как свой собственный, а в результате синтезирует вирусные белки.

Образовавшиеся белки объединяются в вирусные частицы, которые могут выходить из клетки разными путями. Вирионы вирусов гепатита C выходят из клетки путем почкования (экзоцитозом), при таком варианте клетка долгое время остается живой и служит для продукции новых вирионов.


Известен и другой механизм выхода вирионов из клетки: взрывной, при котором оболочка клетки разрывается, и тысячи вирионов отправляются инфицировать новые клетки. Такой способ характерен для аденовирусов, ротавирусов.

Это уникальная группа вирусов, инфицирующая только бактерии. Бактериофаг имеет капсид, с содержащимся внутри наследственным материалом - ДНК (реже РНК), протеиновым хвостом. Бактериофаги открыты в 1915 году и с тех пор активно применяются в ходе генетических исследований.

Ниже вы можете видеть типичное строение бактериофага. Бактериофаг напоминает шприц, который протыкает стенку бактерии и впрыскивает внутрь нее свою нуклеиновую кислоту.


Бактериофаги успешно применяются в медицине для лечения многих заболеваний. Это высокоэффективные, дорогостоящие препараты, которые помогают, например, нормализовать микрофлору кишечника при бактериальных инфекциях.

Вирусы вызывают множество заболеваний человека и животных. Некоторые из них неизлечимы даже на современном этапе развития медицины, например бешенство. К вирусным инфекциям относятся грипп, корь, свинка, СПИД (вызванный ВИЧ), полиомиелит, желтая лихорадка, онковирусы.

Такая группа, как онковирусы, потенцируют развитие опухолей в организме. К ВИЧ и онкогенным вирусам не существует специфических антител, что затрудняет процесс создания вакцины. В то же время против ряда вирусных инфекций: корь, ветряная оспа созданы вакцины, создающие стойкий пожизненный иммунитет.

Клетки вырабатывают защитный белок - интерферон. Это вещество подавляет синтез новых вирусных частиц, приводит к повышению температуры тела (например, при гриппе).


Вирус иммунодефицита человека (ВИЧ) представляет для организма большую опасность. Он размножается в T-лимфоцитах - клетках крови, которые выполняют иммунную функцию. С гибелью T-лимфоцитов разрушается иммунная система, становится невозможным сопротивление организма бактериями, вирусам и грибам, что в отсутствии лечения приводит к вторичным инфекциям.

Риск заражения ВИЧ присутствует при гемотрансфузии (переливании крови), половом акте. Инфекция также может быть передана от ВИЧ инфицированной матери к плоду.


Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.