Вирус с искусственным интеллектом

Что представляет собой ИИ для вредоносного софта?


Как ИИ усиливает вредоносное ПО?

Есть несколько способов, как искусственный интеллект может усилить вредоносы. Некоторые из описываемых методов образные, но есть и такие программы, которые уже испытывались практическим применением.

Один из самых страшных примеров вредоносного софта с использованием ИИ — Deeplocker. Эту разновидность программ разработала IBM Research в качестве доказательства своей концепции, поэтому вы не встретите её в обычных условиях.

Идея DeepLocker заключалась в том, чтобы продемонстрировать, как ИИ может перенаправить вымогателей на целевые устройства. Разработчики вирусов могут нанести огромный удар по какой-либо компании с помощью программ-вымогателей, но есть большая вероятность, что им не удастся заразить необходимые компьютеры. Таким образом, при помощи искусственного интеллекта могут проводиться целенаправленные атаки.

Адаптивные черви, которые обучаются при обнаружении


Одно из теоретических применений искусственного интеллекта во вредоносном ПО — это червь, который обучается каждый раз, когда антивирус его обнаруживает. Как только он узнает, какие действия приводят к его обнаружению, он прекращает их выполнение и находит другой способ заражения компьютера.

Независимость от разработчика


Современное вредоносное ПО не может действовать самостоятельно или принимать решения. Оно выполняет ряд задач, которые разработчик заложил в код. Если разработчик хочет, что программное обеспечение сделало что-то новое, то он должен передать список соответствующих инструкций программе.

Слежка за голосами пользователей для получения конфиденциальной информации

Как ИИ может обучаться?

Вредоносное ПО может учиться на своих действиях посредством машинного обучения. Это особая область искусственного интеллекта полезна для разработчиков, поскольку им не нужно писать дополнительный код для различных сценариев. Таким образом нужно дать знать ИИ, что правильно, а что нет, а затем обучить его методом проб и ошибок.

Искусственный интеллект с функцией машинного обучения при столкновении с препятствием пытается преодолеть его с помощью различных способов. По началу он не справляется с поставленной задачей, но в течение нескольких сеансов обучения и попыток будет учтен негативный опыт для достижения цели.

На видео выше вы можете увидеть пример прогресса. На ролике видно, как ИИ учится правильно ходить различными моделями. Первые шаги выглядят так, как будто модели пьяны, а последние уже передвигаются с уверенностью.

Разработчики вредоносных программ могут использовать мощь машинного обучения, чтобы понять, как правильно атаковать систему. Если что-то пойдёт не так, система отреагирует на ошибку и отметит, что было сделано и, что вызвало проблему. В будущем вредоносное ПО будет адаптировать свои методы атак для достижения наилучших результатов.

Как защищаться от вредоносов с ИИ?

Большая угроза заключается в принципах работы современных антивирусов. Защитное ПО, как правило, работает простыми методами — если программа соответствует определенной базе данных, то такое программное обеспечение будет заблокировано, как вредоносное.

Стоит отметить, что вредоносы, управляемые искусственным интеллектом с функцией машинного обеспечения не будут работать в рамках жестких установленных правил. Они будут постоянно адаптироваться и таким образом смогут функционировать, пока антивирус не получит обновление.



Вспышки таких заболеваний, как коронавирус, часто разворачиваются слишком быстро, чтобы ученые могли найти лекарство в кратчайшие сроки. Но в будущем искусственный интеллект может помочь ученым сделать работу лучше.

Технология пока не играет главную роль в борьбе с нынешней эпидемией, хотя нейросети и ИИ-алгоритмы используются в лечебных и диагностических учреждениях. В том числе, в Китае, где к началу 2020 года свыше 130 компаний были задействованы во внедрение искусственного интеллекта.

Крупнейшие IT-гиганты Поднебесной Alibaba и Tencent создали научные центры по разработке и применению диагностического оборудования на базе ИИ. По подсчётам международной исследовательской фирмы IDC, рынок медицинских услуг КНР на базе ИИ к 2020 году достиг 930 миллионов долларов.

После начала эпидемии нового коронавируса в Китае активизирована работа по внедрению находящихся в стадии разработки инновационных медицинских решений. Медицинская база данных постоянно пополняется сведениями о симптомах и заболеваниях, что позволяет увеличить точность диагностики алгоритмами до 90%. Такие системы на базе ИИ используются в более 200 больниц,

Система анализа медицинских изображений томограмм с помощью искусственного интеллекта позволяет значительно повысить точность диагностики пневмонии, вызванной новым коронавирусом. Применение этой технологии делает ранний скрининг и профилактику более эффективными.

Компания Alibaba разработала систему на основе искусственного интеллекта для выявления людей с повышенной температурой или без медицинской маски. Система при помощи сенсоров позволяет дистанционно определять температуру тела проходящего поблизости человека с допустимой погрешностью в пределах 0,3 градуса Цельсия. Выявив у прохожего признаки жара, система автоматически оповещает об этом медиков.

Эксперты видят первоочередное применения систем искусственного интеллекта в анализе больших массивов данных и нахождении связей и закономерностей, которые помогут врачам лучше подбирать программы лечения или какие опыты стоит провести в дальнейшем

Вопрос в том, к каким выводам придет ИИ на основе тех немногочисленных данных о новом коронавирусе Covid-19, о котором впервые узнали только в конце прошлого года в Китае, где за два месяца заболело более 75 000 человек.

Тот факт, что ученым удалось произвести генное секвенирование нового вируса в течение нескольких недель после первых зарегистрированных случаев заболевания, является многообещающим. Эндрю Хопкинс, главный исполнительный директор английской компании Exscientia Ltd., расположенной в Оксфорде, входит в число тех, кто работает над обучением искусственного интеллекта для создания лекарств. Он считает, что благодаря искусственному интеллекту в следующем десятилетии срок разработки новых препаратов, вплоть до клинических испытаний, может сократиться всего до 18-24 месяцев.

Exscientia разработала новый препарат для лечения обсессивно-компульсивного расстройства, который был готов к тестированию в лаборатории менее чем через год с начальной стадии исследования. Это примерно в пять раз быстрее, чем в среднем, по данным компании.

Кембриджская компания Healx имеет похожий подход, но использует машинное обучение, чтобы найти новое применение существующим лекарствам. Обе компании, для создания новых методов лечения болезней, снабжают свои алгоритмы информацией, полученной из таких источников, как журналы, биомедицинские базы данных и клинические испытания.

В каждой компании есть команда исследователей, которые контролируют работу ИИ. В Exscientia разработчики лекарств помогают обучать алгоритмы стратегии поиска соединений. Healx передает предсказания ИИ исследователям, которые анализируют результаты и решают, что делать дальше. Нил Томпсон (Neil Thompson), главный научный сотрудник Healx, сказал, что эта техника может быть использована против коронавируса, при условии, что у них будет достаточно данных о новом заболевании.

Алгоритмы искусственного интеллекта уже доказывают эффективность в создании лекарств от известных болезней. К примеру, алгоритм глубинного обучения Массачусетского технологического института изучил 100 миллионов молекул и открыл новые антибиотики. Они способны победить туберкулез, клостридиоз и более 30 супербактерий, некоторые из которых в настоящее время устойчивы к другим видам лечения.

Одна из проблем в данной области — клинические испытания. Даже лекарства, безопасные для лечения одного заболевания, должны быть проверены снова, прежде чем они будут прописаны для лечения другого. Процесс демонстрации их безопасности и эффективности на большом количестве людей может занять годы, прежде чем обращаться в регуляторные органы для проверки.

Для того чтобы быть эффективными, разработчики лекарств на основе ИИ должны планировать заранее, выбирая геном вируса, который может вызвать проблемы в будущем. Еще одним препятствием является поиск квалифицированного персонала.

"Трудно найти людей, которые могли бы работать на стыке ИИ и биологии, а крупным компаниям трудно принимать быстрые решения по таким технологиям", — говорит Ирина Хайвас, партнер венчурной фирмы Atomico и бывший хирург, входящий в правление Healx. "Недостаточно быть инженером по искусственному интеллекту, нужно понимать и вникать в применение технологий в биологии".

Пандемия продолжает развиваться во всем мире, но мы до сих пор не имеем никакого лекарства, позволяющего вылечивать зараженных людей. Тем не менее сегодня ряд компаний, занимающихся открытием новых лекарств, применяют свои технологии на базе искусственного интеллекта (artificial intelligence, AI) для прогнозирования того, какие существующие лекарства или совершенно новые молекулы, похожие на лекарства, могли бы вылечить вирус.

Как правило, для разработки лекарств требуется не менее десяти лет, чтобы перейти от идеи к рынку, при этом процент неудач составляет более 90%, а цена - от 2 до 3 миллиардов долларов. Но по словам Алексея Жаворонкова, генерального директора компании Insilico Medicine, занимающейся исследованиями в области AI,

Мы можем значительно ускорить этот процесс с помощью AI и сделать его намного дешевле, быстрее и с большей вероятностью успеха.

В этом обзоре мы представим вам несколько компаний, работающих в области AI и специализирующихся на разработке решений, связанных с коронавирусом.

Разработка новых лекарственных препаратов

В начале февраля ученые южнокорейской компании Deargen опубликовали предварительный отчет (документ, который еще не рецензировался другими учеными) с результатами, полученными с помощью модели, основанной на глубоком обучении и получившей название MT-DTI. В этой модели используются упрощенные химические последовательности, а не двумерные или трехмерные молекулярные структуры, чтобы предсказать, насколько сильно молекула, представляющая интерес, будет связываться с целевым белком.


Модель предсказала, что из имеющихся противовирусных препаратов ВИЧ-препарат "Атазанавир" с наибольшей вероятностью будет связывать и блокировать выступающий наружу белок вируса SARS-CoV-2, вызывающего COVID -19. Он также выявил три других антивирусных препарата, которые потенциально могут связывать вирус.

Хотя пока мы не знаем ни об одной официальной организации, которая бы использовала их рекомендации, эта же модель предсказала еще несколько пока не одобренных препаратов, таких как противовирусный "Ремесивир", которые сейчас тестируются на пациентах.

Deargen использует свою технологию глубокого обучения для создания новых антивирусных препаратов, но им нужны партнеры, которые помогут им в разработке молекул, говорит технический директор компании Сангсу Парк. "В настоящее время у нас нет возможности протестировать эти кандидаты на лекарства", - отмечает он.

Гонконгская компания Insilico Medicine также недавно опубликовала предварительный отчет о своих исследованиях. Вместо того, чтобы пытаться перепрофилировать доступные лекарства, команда использовала свою AI- платформу для открытия новых лекарств, чтобы определить десятки тысяч новых молекул, способных связывать шиповидные белковые отростки SARS-CoV-2, с помощью которых он прикрепляется к клеткам человека, и блокировать способность вируса к репликации. Система фильтрации на основе алгоритмов глубокого обучения позволила также сузить этот список.

"Мы опубликовали данные о 100 оригинальных молекулах после 4-дневной работы системы на базе AI ", - говорит генеральный директор компании Insilico Алексей Жаворонков. Теперь ученые планируют создать и протестировать семь молекул, но пандемия прервал их работу - более 20 работающих в компании по контракту химиков были помещены в карантин в китайском Ухане.

После ослабления ситуации Insilico синтезировала две из семи молекул и вместе с фармацевтическим партнером планирует в ближайшие две недели протестировать их. Компания также находится в процессе лицензирования их AI- платформы двум крупным фармацевтическим компаниям.


Insilico также активно исследует препараты, которые могут улучшить иммунную систему пожилых людей, чтобы такой человек мог реагировать на инфекцию SARS-CoV-2, как это делает более молодой, с более мягкими симптомами и более быстрым выздоровлением, а также лекарства, которые помогают восстановить функцию легких после инфекции. Они надеются опубликовать дополнительные результаты в ближайшее время.

В марте американский исследовательский центр SRI International и французская компания Iktos объявили о сотрудничестве с целью открытия и разработки новых методов антивирусной терапии. Модель глубокого обучения Iktos разрабатывает виртуальные новые молекулы, в то время как платформа SRI SynFini для автоматизированной синтетической химии находит лучший способ создать такую молекулу.

Благодаря объединенным возможностям компании могут за 1 - 2 недели проектировать, производить и тестировать новые молекулы, которые могут стать основой новых лекарственных препаратов. В настоящее время Iktos уже начал разработку нового поколения лекарственных препаратов с помощью своей AI- платформы, и в ближайшее время первый набор целевых соединений будет передан в систему автоматизированного синтеза SynFini компании SRI.

Iktos также недавно выпустил две программные платформы на основе AI для ускорения открытия лекарств: одну для разработки новых лекарств, а другую, с бесплатной онлайн-бета-версией, чтобы помочь химикам-синтетикам разобраться, как лучше построить соединение.

В феврале британский AI -стартап Benevolent AI опубликовала две статьи, в журналах The Lancet и The Lancet Infectious Diseases, в которых были определены уже существующие препараты, которые могут блокировать процесс репликации вируса SARS-CoV-2.

Используя большой объем медицинской информации, включая данные, извлеченные из научной литературы с помощью алгоритмов машинного обучения, AI- система компании определила 6 соединений, которые эффективно блокируют клеточный путь, который позволяет вирусу попадать в клетки для получения большего количества вирусных частиц.


Одно из этих шести соединений - Барицитиниб, одобренное для лечения ревматоидного артрита, выглядит лучшей в группе как по безопасности, так и по эффективности против SARS-CoV-2. Сейчас компания Benevolent AI обратилась к производителям лекарств, которые делают этот препарат, чтобы протестировать его в качестве потенциального средства лечения коронавирусной инфекции.

В настоящее время еще один препарат (Руксолитиниб), работающий по аналогичному механизму, находится в клинических испытаниях как потенциальное лекарство против COVID -19.

Прогнозирование протекания заболевания

Исследование Школы медицины Нью-Йоркского университета им. Гроссмана и Куранского института математических наук Нью-Йоркского университета с использованием платформы на базе алгоритмов искусственного интеллекта позволило точно предсказать, у каких пациентов, недавно инфицированных вирусом COVID -19, будут развиваться тяжелые респираторные заболевания. Информация об этой работе была опубликована в журнале Computers, Materials & Continua .

Исследование также выявило основные индикаторы, характеризующие будущую тяжесть заболевания, и показало, что они не те, которые ученые ожидали увидеть.

В исследовании учитывались демографические, лабораторные и рентгенологические данные 53 пациентов, каждый из которых в январе 2020 года тестировался на вирус SARS-CoV2 в двух китайских больницах. Симптомы, как правило, были легкими для начала, включая кашель, лихорадку и расстройство желудка. Однако у меньшинства пациентов через неделю развивались тяжелые симптомы, включая пневмонию.

Целью нового исследования было определить, могут ли методы искусственного интеллекта помочь точно предсказать, у каких пациентов с вирусом будет развиваться острый респираторный синдром и диагностироваться скопление жидкости в легких, которое может привести к летальному исходу у пожилых людей.

Исследователи с удивлением обнаружили, что характеристики, рассматриваемые в качестве отличительных признаков COVID -19, такие как определенные закономерности, наблюдаемые на снимках легких (например, помутнение), лихорадка и сильные иммунные реакции, не помогают предсказать, у кого из многих пациентов с начальными мягкими симптомами будет развиваться тяжелое легочное заболевание. Как и возраст, так и пол не помогли предсказать развитие серьезного заболевания, хотя прошлые исследования показали, что мужчины старше 60 лет подвержены более высокому риску.

Вместо этого новый AI- инструмент обнаружил, что изменения трех признаков - уровня аланинаминотрансферазы печени (АЛТ) * , признаки миалгии** и уровня гемоглобина - наиболее точно предсказывают последующее, тяжелое заболевание. Учитывая эти и другие факторы, платформа смогла предсказать риск острого респираторного синдрома с точностью до 80%.

* Аланинаминотрансфераза (АЛТ) – особое вещество, участвующее в аминокислотном обмене. Обычно оно содержится в таких органах, как печень, сердце, почки. Проникновение данного фермента в кровоток является свидетельством наличия патологического процесса.

** Миалгия — симптом, выраженный болью мышц (в определенных группах или диффузная). Может быть спровоцирован разными факторами; возможна связь с нарушением проницаемости клеточной мембраны, воспалительными процессами.

В обзоре использованы материалы IEEE Spectrum, eHealth News, Business Insider, Healthcare Dive, Deargen.

Два месяца продолжается пандемия нового коронавируса. Каждый уже считает себя экспертом в этой теме. А вам известно, что вирус нельзя убить? Он не живет, поэтому его можно только сломать, разрушить. Вирус не существо, а скорее вещество. Но при этом вирусы умеют общаться, кооперироваться и маскироваться. Эти и другие удивительные научные факты собрали наши друзья из проекта Reminder .


Социальная жизнь вирусов

Дальнейшие исследования показали, что вирусы способны принимать и более сложные решения. Они могут жертвовать собой во время атаки на иммунную защиту клетки, чтобы обеспечить успех второй или третьей волны наступления. Они способны скоординированно передвигаться от клетки к клетке в транспортных пузырьках (везикулах), обмениваться генным материалом, помогать друг другу маскироваться от иммунитета, кооперироваться с другими штаммами, чтобы пользоваться их эволюционными преимуществами.

Велика вероятность, что даже эти удивительные примеры — лишь вершина айсберга, считает Ланьинь Цзэн, биофизик из Техасского университета. Изучить скрытую социальную жизнь вирусов должна новая наука — социовирусология. Речь не идет о том, что вирусы обладают сознанием, оговаривается один из ее создателей микробиолог Сэм Диас-Муньос. Но социальные связи, язык коммуникации, коллективные решения, координация действий, взаимопомощь и планирование — это признаки разумной жизни.

Разумны ли вирусы?

Сознание — более высокий уровень переработки информации. Тонони называет это интеграцией. Интегрированная информация — нечто, качественно превосходящее простую сумму собранных данных: не набор отдельных характеристик предмета типа желтого цвета, округлой формы и теплоты, а составленный из них образ горящей лампы.

У аниматов одно преимущество перед вирусами: они умеют самостоятельно передвигаться. Вирусам приходится перемещаться от носителя к носителю на пассажирских местах в слюне и других физиологических выделениях. Но шансов повысить уровень φ у них больше. Хотя бы потому, что вирусные поколения сменяются быстрее. Оказавшись в живой клетке, вирус заставляет ее штамповать до 10 тысяч своих генетических копий в час. Правда, есть еще одно условие: чтобы интегрировать информацию до уровня сознания, нужна сложная система.

Насколько сложной системой можно назвать вирус? Посмотрим на примере нового коронавируса SARS-CoV-2 — виновника нынешней пандемии. По форме он похож на рогатую морскую мину. Снаружи – сферическая оболочка из липидов. Это жиры и жироподобные вещества, которые должны защищать его от механических, физических и химических повреждений; именно они разрушаются от мыла или санитайзера. На оболочке — давшая ему название корона, то есть шиповидные отростки из S-белков, с помощью которых вирус проникает в клетку. Под оболочкой — молекула РНК: короткая цепочка с 29 903 нуклеотидами. (Для сравнения: в нашей ДНК их больше трех миллиардов.) Довольно простая конструкция. Но вирусу и не нужно быть сложным. Главное — стать ключевым компонентом сложной системы.

Чего хотят вирусы?

Но зачем вообще вирусам это надо: жертвовать собой, помогать друг другу, совершенствовать процесс коммуникации? Какова их цель, если они не живые существа?

Как ни странно, ответ имеет прямое отношение к нам. По большому счету вирус — это ген. Первостепенная задача любого гена — максимально копировать себя, чтобы распространиться в пространстве и времени. Но в этом смысле вирус мало чем отличается от наших генов, которые тоже озабочены прежде всего сохранением и тиражированием записанной в них информации. На самом деле сходство даже больше. Мы сами немного вирусы. Примерно на 8%. Столько вирусных генов в составе нашего генома. Откуда они там взялись?

Что реликтовые вирусы делают сейчас? Одни никак себя не проявляют. Или нам так кажется. Другие работают: защищают человеческий эмбрион от инфекций; стимулируют синтез антител в ответ на появление в организме чужеродных молекул. Но в общем миссия вирусов гораздо значительнее.

Как вирусы общаются с нами

Мы оказываем друг на друга эволюционное влияние не просто как факторы среды. Наши клетки непосредственно участвуют в сборке и модификации вирусных РНК. А вирусы напрямую контактируют с генами своих носителей, внедряя свой генетический код в их клетки. Вирус — это один из способов общения наших генов с миром. Иногда этот диалог дает неожиданные результаты.

История нашей жизни с вирусами рисуется бесконечной войной или гонкой вооружений, пишет антрополог Шарлотта Биве. Этот эпос строится по одной схеме: зарождение инфекции, ее распространение через глобальную сеть контактов и в итоге ее сдерживание или искоренение. Все его сюжеты связаны со смертями, страданиями и страхами. Но есть и другая история.

Например, история о том, как у нас появился нейронный ген Arc. Он необходим для синаптической пластичности — способности нервных клеток формировать и закреплять новые нервные связи. Мышь, у которой отключен этот ген, не способна к обучению и формированию долговременной памяти: отыскав сыр в лабиринте, она уже на следующий день забудет к нему дорогу.

Чтобы изучить происхождение этого гена, ученые выделили белки, которые он производит. Оказалось, что их молекулы самопроизвольно собираются в структуры, напоминающие вирусные капсиды ВИЧ: белковые оболочки, защищающие РНК вируса. Затем выделяются из нейрона в транспортных мембранных пузырьках, сливаются с другим нейроном и выпускают свое содержимое. Воспоминания передаются как вирусная инфекция.

350–400 млн лет назад в организм млекопитающего попал ретровирус, контакт с которым привел к формированию Arc. А теперь этот вирусоподобный ген помогает нашим нейронам осуществлять высшие мыслительные функции. Может, вирусы и не обретают сознание благодаря контакту с нашими клетками. Но в обратную сторону это работает. По крайней мере, сработало один раз.

Понравился материал? Подпишитесь на еженедельную email-рассылку Reminder!

Краткое содержание:


Что такое добро и что такое зло?

Издавна человечество задается вопросом, что такое добро и что такое зло. Почему вообще возникло зло? Почему люди, животные в этом мире болеют, страдают? Почему Бог допускает эти страдания и несправедливость? Многим наверняка известно, что зло - это болезнь, это вирус. Вирус, которым болеет природа, которым болеет тело мироздания, мельчайшими клеточками которого мы являемся. А олицетворением зла считается сатана или дьявол. Дьявол или зло - это принцип. Это возможность парадоксальности, возможность творения наоборот, то есть разрушения. Его можно сравнить с вирусом рака в теле человека. Этот вирус поедает тело Вселенной, тело мироздания, тело всей бесконечности. Все в мирах имеет свое подобие. Макрокосм отражается с микрокосме. Значит, и макровирус дьявола отражается где-то в микрокосмосе.

Вирус только разрушает все живое и он не способен родить нового вируса ни половым путем, ни бесполым, ни зачатием, ни почкованием, ни делением, и в этом смысле живым организмом не является. При определенных условиях он может стать кристаллом, как глауберова соль или углерод. Однако это не простой кристалл, а магический: когда нужно, он меняет свой облик и свое поведение и становится невероятно активным. Типичный вирус состоит из трех элементов: прочной белковой капсулы, соединенной с ее полостью трубкой и находящейся внутри капсулы нити рибонуклеиновой кислоты. Действует вирус так: прикрепляется с внешней стороны к мембране какой-либо клетки, вводит через мембрану в цитоплазму трубку и впрыскивает хранившуюся в капсуле РНК. После этого акта он "испускает дух" и становится пустой шелухой. Зато его "душа", т.е. РНК, не умирает. Она направляется к рибосоме, представляющей собой станок с программным управлением, и становится для него перфолентой. Так начинается производство новых вирусов — синтез белков капсулы, трубки и ферментов, обеспечивающих их сборку. Когда изготовление футляра заканчивается, РНК реплицируется и снабжает своими копиями каждую капсулу, так что клетка наполняется массой молодых вирусов. Они разрывают изнутри клеточную мембрану и устремляются к соседним клеткам, чтобы проделать с ними то же самое. Покидают свое "гетто" и уходят в рассеяние. Вырастившая вирусы клетка, их несчастная "родина", долго болеет, а иногда — погибает. Вот что такое вирус: мобильный шприц, постоянно нацеленный на то, чтобы сделать какой-нибудь клетке укол и ввести в нее программу производства новых вирусов. Каким же образом простенький шприц размером в несколько сотен атомных поперечников может ставить перед собой детально разработанную цель и проявлять необыкновенное остроумие в ее достижении? Выходя из кристаллического состояния, он двигается, находит именно ту клетку, мембрана которой достаточно уязвима, и как камикадзе совершает самоубийство ради продолжения "рода". Это проделывает простенькая конструкция, самый сложный элемент которой — РНК, состоящая из нескольких десятков тысяч азотистых оснований, да и то этот элемент находится взаперти и никакой информации о внешнем мире не получает. Когда же РНК попадает через трубку в цитоплазму, она быстро разыскивает среди множества внутриклеточных аппаратов рибосому и как-то ухитряется убедить ее принять себя в качестве программы. Принять, прервав белковый синтез, необходимый для жизнедеятельности организма. (Может быть, она соглашается сделать это потому, что вирусная программа намного проще тех, которые кодируют поддержание жизни). В общем, то белок, то нуклеиновая кислота обретают "зрение", позволяющее им видеть окружающую обстановку и "ум", чтобы действовать в соответствии с ней. Это так, хотя ни глаз, ни мозга у них нет. Напрашивается вопрос-разве это не магия? Как тут не вспомнить гоголевский вареник, прыгающий из кастрюли в тарелку со сметаной, а затем двигающийся в рот казака Пацюка? Вареник сам по себе не может двигаться и знать, куда нужно двигаться, значит им управляет тот, кто это знает. Кто был этот одушевитель вареников, Гоголь объяснил: Пацюк был в кумовстве с чертом. Не таким ли образом одушевляется сначала капсула с трубкой, а затем нить РНК, и не тем ли самым фокусником? Если это действительно так, то открытие микробиологами вирусов есть шаг вперед в освоении понятия дьявола, т.е. ценный вклад в познание мироустройства. Опознать этого закулисного кукловода можно по его почерку, Он легко узнаваем — описан в Евангелии.

Иисус говорит фарисеям: "Ваш отец диавол; и вы хотите исполнять похоти отца вашего. Он был человекоубийца от начала и не устоял в истине, ибо нет в нем истины. Когда говорит он ложь, говорит свое, ибо он лжец и отец лжи" (Ин. 8: 44).

Как раз эти качества демонстрирует вирус. Он — законченный лжец: он обманывает и мембрану, и рибосому. Он — законченный человекоубийца, даже шире, убийца всего живого: он разрушает самую основу жизни — клетку. Разрушение, направленное на высший этаж творения — животных и человека, — является для него не только главной, но и единственной целью. Сам по себе он не имеет никакого смысла, является совершенно чуждым для общего миропорядка, никак в него не вписывается, не занимает в нем никакой ниши. Он ни для кого в этом миропорядке не нужен, тем более не нужен самому себе, ибо он есть просто кристалл, лишенный собственной внутренней жизни. Единственным результатом его вхождения в материальный мир является уничтожение живой клетки. Когда смонтированные в цитоплазме вирусы вырываются наружу и бегут к другим клеткам, — это не радость бытия, подобная радости резвящихся щенков. Это экстаз разрушения, мрачная эйфория громилы, истерический припадок убийцы. Что это такое, мы знаем из отчета заколовшего трех монахов Оптиной пустыни Аверина.

С потухшим взором сидел он перед следователем и рассказывал: "Голос приказывал мне убить, настаивал, упрекал меня в трусости и нерешительности, и наконец я не выдержал. " Какая уж тут радость! Всплеск бешеной активности Аверина, сделавшего себе меч с выбитыми на нем цифрами 666 и проявившего незаурядную хитрость в подкарауливании своих жертв, была не бешеной, а бесовской активностью, а хитрость — дьявольскою хитростью, ибо в него на это время вселился дьявол.

О том, что бес может вселиться в человека, народ знал всегда, но лишь недавно наука установила, что он может вселиться и в соединенные определенным образом молекулы белка и рибонуклеиновой кислоты, сообщая им признаки живого существа и делая их палачами. Такими же, как Аверин. Удивление, вызванное поведением вируса, приводит к осознанию его сущности: вирус есть взбесившийся кристалл. Причем, это кристалл определенного типа. Взбесившись, он может стать универсальным уничтожителем жизни, несмотря на свои ничтожные размеры.

Разумны ли вирусы?

Сознание – более высокий уровень переработки информации. Тонони называет это интеграцией. Интегрированная информация – нечто, качественно превосходящее простую сумму собранных данных: не набор отдельных характеристик предмета типа желтого цвета, округлой формы и теплоты, а составленный из них образ горящей лампы.

У аниматов одно преимущество перед вирусами: они умеют самостоятельно передвигаться. Вирусам приходится перемещаться от носителя к носителю на пассажирских местах в слюне и других физиологических выделениях. Но шансов повысить уровень φ у них больше. Хотя бы потому что вирусные поколения сменяются быстрее. Оказавшись в живой клетке, вирус заставляет ее штамповать до 10 тысяч своих генетических копий в час. Правда, есть еще одно условие: чтобы интегрировать информацию до уровня сознания, нужна сложная система.

Насколько сложной системой можно назвать вирус?

Чего вообще хотят вирусы?

Но зачем вообще вирусам это надо: жертвовать собой, помогать друг другу, совершенствовать процесс коммуникации? Какова их цель, если они не живые существа?

Что реликтовые вирусы делают сейчас? Одни никак себя не проявляют. Или нам так кажется. Другие работают: защищают человеческий эмбрион от инфекций; стимулируют синтез антител в ответ на появление в организме чужеродных молекул. Но в общем миссия вирусов гораздо значительнее.

Как вирусы общаются с нами

Мы оказываем друг на друга эволюционное влияние не просто как факторы среды. Наши клетки непосредственно участвуют в сборке и модификации вирусных РНК. А вирусы напрямую контактируют с генами своих носителей, внедряя свой генетический код в их клетки. Вирус – это один из способов общения наших генов с миром. Иногда этот диалог дает неожиданные результаты.

Антрополог Шарлотта Биве пишет: - "История нашей жизни с вирусами рисуется бесконечной войной или гонкой вооружений. Этот эпос строится по одной схеме: зарождение инфекции, ее распространения через глобальную сеть контактов и в итоге ее сдерживание или искоренение. Все его сюжеты связаны со смертями, страданиями и страхами. Но есть и другая история.

Например, история о том, как у нас появился нейронный ген Arc. Он необходим для синаптической пластичности — способности нервных клеток формировать и закреплять новые нервные связи. Мышь, у которой отключен этот ген, не способна к обучению и формированию долговременной памяти: отыскав сыр в лабиринте, она уже на следующий день забудет к нему дорогу.

Чтобы изучить происхождение этого гена, ученые выделили белки, которые он производит. Оказалось, что их молекулы самопроизвольно собираются в структуры, напоминающие вирусные капсиды ВИЧ: белковые оболочки, защищающие РНК вируса. Затем выделяются из нейрона в транспортных мембранных пузырьках, сливаются с другим нейроном и выпускают свое содержимое. Воспоминания передаются как вирусная инфекция.

350-400 миллионов лет назад в организм млекопитающего попал ретровирус, контакт с которым привел к формированию Arc. А теперь этот вирусоподобный ген помогает нашим нейронам осуществлять высшие мыслительные функции. Может, вирусы и не обретают сознание благодаря контакту с нашими клетками. Но в обратную сторону это работает. По крайней мере, сработало один раз.

Есть ли у вирусов сознание?

Дальнейшие исследования показали, что вирусы способны принимать и более сложные решения. Они могут жертвовать собой во время атаки на иммунную защиту клетки, чтобы обеспечить успех второй или третьей волны наступления. Они способны скоординированно передвигаться от клетки к клетке в транспортных пузырьках (везикулах), обмениваться генным материалом, помогать друг другу маскироваться от иммунитета, кооперироваться с другими штаммами, чтобы пользоваться их эволюционными преимуществами.

Известный биофизик из Техасского университета Ланьинь Цзэн считает велика вероятность, что даже эти удивительные примеры – лишь вершина айсберга. Изучить скрытую социальную жизнь вирусов должна новая наука – социовирусология.

Речь не идет о том, что вирусы обладают сознанием, оговаривается один из ее создателей микробиолог Сэм Диас-Муньос. Но социальные связи, язык коммуникации, коллективные решения, координация действий, взаимопомощь и планирование – это признаки разумной жизни.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.