В состав вирусов как и бактерий входят 1 нуклеиновые кислоты и белки

Функции вирусных нуклеиновых кислот

Функция вирусных нуклеиновых кислот независимо от их типа состоит в хранении и передаче генетической информации. Вирусные ДНК могут быть линейными (как у эукариотов) или кольцевыми (как у прокариотов), однако в отличие от ДНК тех и других она может быть представлена однонитевой молекулой. Вирусные РНК имеют разную организацию (линейные, кольцевые, фрагментированные, однонитевые и двунитевые), они могут быть представлены плюс- или минус-нитями.

Плюс-нити функционально тождественны и-РНК, т. е. способны транслировать закодированную в них генетическую информацию на рибосомы клетки хозяина.

Минус-нити не могут функционировать как и-РНК, и для трансляции содержащейся в них генетической информации необходим синтез комплементарной плюс-нити.

РНК плюс-нитевых вирусов в отличие от РНК минус-нитевых имеют специфические образования, необходимые для узнавания рибосомами. У двунитевых как ДНК-, так и РНК-содержащих вирусов, информация обычно записана только в одной цепи, чем достигается экономия генетического материала.

Вирусные белки

Вирусные белки по локализации в вирионе делятся на:

-белки суперкапсидной оболочки,

Белки капсидной оболочки у нуклеокапсидных вирусов выполняют защитную функцию - защищают вирусную нуклеиновую кислоту от неблагоприятных воздействий, - и рецепторную (якорную) функцию, обеспечивая адсорбцию вирусов на клетках хозяина и проникновение в них.

Белки суперкапсидной оболочки, как и белки капсидной оболочки, выполняют защитную и рецепторную функции. Это сложные белки - липо- и гликопротеиды. Некоторые из этих белков могут формировать морфологические субъединицы в виде шипованных отростков и обладают свойствами гемагглютининов (вызывают агглютинацию эритроцитов) или нейраминидазы (разрушают нейраминовую кислоту, входящую в состав клеточных стенок).

Отдельную группу составляют геномные белки, они ковалентно связаны с геномом и образуют с вирусной нуклеиновой кислотой рибо- или дезоксирибонуклеопротеиды. Основная функция геномных белков - участие в репликации нуклеиновой кислоты и реализации содержащейся в ней генетической информации, к ним относятся РНК-зависимая РНК-полимераза и обратная транскриптаза.

В отличие от белков капсидной и суперкапсидной оболочки, это не структурные, а функциональные белки.

Все вирусные белки выполняют и функцию антигенов, поскольку являются продуктами вирусного генома и, соответственно, чужеродными для организма хозяина.

Представители царства Vira по типу нуклеиновой кислоты делятся на 2 подцарства - рибовирусные и дезоксирибовирусные. В подцарствах выделяют семейства, рода и виды. Принадлежность вирусов к тому или иному семейству (всего их 19) определяется:


  • строением и структурой нуклеиновой кислоты,
  • типом симметрии нуклеокапсида,
  • наличием суперкапсидной оболочки.

Принадлежность к тому или иному роду и виду связана с другими биологическими свойствами вирусов:


  1. размер вирионов (от 18 нм до 300 нм),
  2. способность размножаться в культурах ткани и курином эмбрионе,
  3. характер изменений, происходящих в клетках под воздействием вирусов,
  4. антигенные свойства,
  5. пути передачи,
  6. круг восприимчивых хозяев.

Вирусы - возбудители болезней человека относятся к 6 ДНК-содержащим семействам (поксвирусы, герпесвирусы, гепаднавирусы, аденовирусы, паповавирусы, парвовирусы) и 13 семействам РНК-содержащих вирусов (реовирусы, тогавирусы, флавирусы, коронавирусы, парамиксовирусы, ортомиксовирусы, рабдовирусы, бунъявирусы, аренавирусы, ретровирусы, пикорнавирусы, калицивирусы, филовирусы

Процессы взаимодействия вируса с клеткой макроорганизма

Взаимодействие вируса с клеткой - это сложный процесс, результаты которого могут быть различны. По этому признаку (конечный результат) можно выделить 4 типа взаимодействия вирусов и клеток:


  • продуктивная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором происходит репродукция вирусов, а клетка погибает (для бактериофагов такой тип взаимодействия с клеткой называют литическим). Продуктивная вирусная инфекция лежит в основе острых вирусных заболеваний, а также в основе условных латентных инфекций, при которых погибают не все клетки пораженного органа, а только часть, а остальные неповрежденные клетки этого органа компенсируют его функции, вследствие чего заболевание некоторое время не проявляется, пока не наступит декомпенсация;
  • абортивная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором репродукция вирусов не происходит, а клетка, избавляется от вируса, функции ее при этом не нарушаются, поскольку это происходит только в процессе репродукции вируса;
  • латентная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором происходит репродукция и вирусов, и клеточных компонентов, но клетка не погибает; при этом клеточные синтезы преобладают, и поэтому клетка достаточно длительно сохраняет свои функции - этот механизм лежит в основе безусловных латентных вирусных инфекций;
  • вирус-индуцированные трансформации - это такой тип взаимодействия вируса с клеткой, при котором клетки, пораженные вирусом, приобретают новые, ранее не присущие им свойства. Геном вируса или его часть встраивается в геном клетки, и вирусные гены превращаются в группу клеточных генов. Этот интегрированный в хромосому клетки-хозяина вирусный геном называется провирус, а такое состояние клеток обозначается как вирогения.

При любом из указанных типов взаимодействия вирусов и клеток можно выделить процессы, направленные на то, чтобы доставить вирусную нуклеиновую кислоту в клетку, обеспечить условия и механизмы ее репликации и реализации содержащейся в ней генетической информации.

Вирусы, как и бактерии, можно обнаружить в каждой точке нашей планеты. Они встречаются в горячих источниках, на дне океанов и даже в арктических льдах. Химический состав вирусов долгое время удивлял ученых, так как он существенно отличается от состава всех ранее известных организмов: только вирусы способны хранить генетическую информацию на матрице РНК, транскрибировать ДНК на матрице РНК, встраивать свой геном в ДНК живой клетки под действием ферментов интеграз. В этой статье мы подробно разберем структуру, геном и химический состав вирусов.


Общие сведения о вирусах

Находясь вне живой клетки, вирусы не проявляют никаких признаков, характерных для живых организмов. Находящиеся в таком состоянии неактивные вирусы называют вирионами. В вирионе нет клеточных органелл, характерных для клеток других живых организмов, - плазматической мембраны, митохондрий, рибосом, ядрышка, ядра и других. Вирион включает оболочку из белковых субъединиц - капсид, дополнительную оболочку, которая есть не у всех вирусов, - суперкапсид и геном.

Генетический материал вируса реализуется только при попадании в живую клетку. В зависимости от типа вирусного генома, нуклеиновые кислоты реплицируются либо в ДНК клетки хозяина, либо на митохондриях в цитоплазме.


Структура простого вириона

Простой вирион состоит из генетического материала и внешней оболочки - капсида. Капсид состоит из белковых субъединиц, называемых капсомерами. Способ организации каспомеров определяет пространственную структуру вируса. Химический состав капсида представлен одним или несколькими видами белков. Форма капсида может быть икосаедрической (характерна для аденовирусов), спиральной (вирус табачной мозайки) или комплексной (встречается у проксивирусов и рабдовирусов). Капсид может состоять как из одного, так и из нескольких видов белков. Субъединицы капсида во многом определяют морфологию и химический состав вирусов.


Капсид защищает генетический материал вируса от механических повреждений, влияния перепадов температуры, рН, воздействия радиации и химических веществ. Капсид вместе с геномом вирусом называют нуклеокапсидом.

Структура сложного вириона

Сложно организованный вирион имеет в составе дополнительную структуру - суперкапсидную оболочку, которая находится над капсидом.

Строение и химический состав вирусов, содержащих суперкапсидную оболочку, существенно отличается от состава простых вирусов. Суперкапсидная оболочка формируется из клеточной мембраны клетки хозяина и состоит на 95 % из липидов и белков. В составе суперкапсида присутствует небольшое количество гликопротеинов - сложных белков, в которых белковая часть связана с углеводом ковалентными связями.

Суперкапсид, как и капсид, выполняет защитную функцию. Гликопротеины в составе суперкапсида служат для идентификации и связывания со специфическими рецепторами на поверхности клетки хозяина.

Вирусные белки

Бактериальные белки могут быть капсидными, суперкапсидными или геномными. Капсидные и суперкапсидные белки выполняют защитные функции. Геномные белки ковалентно связаны с геномом и образуют с молекулами вирусной РНК или ДНК рибо- или дезоксирибонуклеопротеины. Эти белки принимают участие в компактизации нуклеиновой кислоты, а также в репарации, транскрипции и трансляции.

Химический состав вирусов сложен. Особенно разнообразны по своей структуре и составу вирусные ферменты. В зависимости от выполняемой функции, их делят на два больших класса:

  • ферменты, необходимые для репликации вирусного генома;
  • ферменты, облегчающие проникновение вирусной нуклеиновой кислоты в клетку и обеспечивающие последующий выход вирионов из клетки.

К первому классу ферментов относится РНК- и ДНК-зависимая РНК-полимераза, ДНК-полимераза, обратная транскриптаза, интеграза, ДНК-бета-гликозилтрансфераза и многие другие.

Ко второму классу относится нейраминидаза, входящая в состав гликопротеинов, гемагглютинин-эстераза, эндолизин и некоторые другие.


Вирусные липиды

Липиды являются одним из основных компонентов химического состава вирусов и в большом количестве содержатся в суперкапсидной оболочке. Суперкапсид формируется из плазматической мембраны клетки хозяина, поэтому состав липидной композиции определяет химический состав этой мембраны. Вирусные липиды представлены в основном фосфолипидами (50-60 %) и холестерином (20-30 %), так как именно эти липиды в наибольших количествах представлены в плазмалемме. В следовых количествах может присутствовать фосфоинозитол.

Липиды являются обязательным компонентом состава суперкапсидной оболочки. Они вносят вклад в формирование поверхностного заряда клетки за счет заряженных групп в составе фосфолипидов, а также придают суперкапсиду гибкость, необходимую для противостояния внешним механическим повреждениям. Липиды также служат хорошим дополнительным изолятором для генетического материала вирусов в случае резких изменения температуры или кислотности среды, обеспечивают поддержание постоянного химического состава клетки. Вирусы с суперкапсидной оболочкой благодаря толстому слою липидов и белков более устойчивы к действию детергентов, чем простые вирионы.

Углеводы в составе вируса

Углеводы в составе вируса, как правило, связаны с липидами или белками капсида (при этом они называются гликолипидами или гликопротеинами соответственно). Гликопротеины образуют шиповатые выросты на поверхности клетки, которые обладают свойствами гемагглютининов (вызывают агглютинацию эритроцитов) или разрушают нейраминовую кислоту, входящую в состав клеточных стенок, с помощью нейраминидазы.

Генетический материал

Генетический материал вирусов может быть представлен как одно- или двуцепочечной ДНК, так и одно- или двуцепочечной РНК. Больше ни у каких живых организмов РНК не является основным носителем генетической информации. ДНК-вирусы реплицируются в ядре клетки, так как для этого процесса необходима клеточная ДНК-полимераза. РНК-вирусы реплицируются в цитоплазме, на рибосомах клетки хозяина.

Существуют вирусы, способные превращать молекулу РНК в молекулу ДНК с помощью обратной транскриптазы. Самым известным представителем этого класса вирусов является вирус иммунодефицита человека. Синтезированная на матрице РНК молекула вирусной ДНК под действием фермента интегразы страивается в хромосому клетки хозяина и транскрибируется вместе с нормальными участками ДНК.


Бактериальные вирусы: бактериофаги

Бактериофаги - особые вирусы, так как они поражают исключительно бактериальные клетки. Структура и химический состав вирусов и бактериофагов очень похожи. Однако у вторых есть дополнительный отросток из фибриллярных белков. Генетический материал бактериофагов может быть представлен как ДНК, так и РНК.


Проникновение бактериофага внутрь бактериальной клетки приводит к ее лизису. Таким образом бактериофаги регулируют численность бактериальной популяции. Кроме того, эти вирусы обеспечивают генетическое разнообразие бактерий. Благодаря бактериофагам осуществляется процесс трансдукции: фрагменты бактериальной хромосомы или плазмиды упаковываются в головку бактериофага, выходят в ее составе из исходной бактериальной клетки и подают в другую бактериальную клетку, где и реплицируются. Так в бактериальную клетку попадает новый для нее генетический материал.

Тема: Основы цитологии

Урок: Нуклеиновые кислоты и их роль в жизнедеятельности клетки

Определение ДНК


Рис. 1. Органеллы, в которых содержится ДНК

Нуклеиновые кислоты являются биополимерами, которые состоят из мономеров – нуклеотидов. Молекула нуклеотида состоит из трех составных частей: из пятиуглеродного сахара – пентозы, из азотистого основания и остатка фосфорной кислоты (рис. 2).


Рис. 2. Нуклеотиды

Сахар, входящий в состав нуклеотида, представляет собой пентозу, то есть он является пятиуглеродным сахаром. В зависимости от вида пентозы (дезоксирибоза или рибоза) различают молекулы ДНК и РНК (рис. 3).


Рис. 3. Химический состав нуклеотидов

Азотистые основания. Во всех типах нуклеиновых кислот: ДНК или РНК, содержатся основания четырех разных видов (рис. 4). В ДНК: аденин (А), гуанин (Г), цитозин (Ц) и тимин (Т). В РНК вместо тимина (Т) урацил (У).


Рис. 4. Азотистые основания нуклеотидов ДНК и РНК

Фосфорная кислота. Нуклеиновые кислоты являются кислотами, потому что в их состав входит остаток фосфорной кислоты. Обратите внимание на то, что остаток фосфорной кислоты присоединен к сахару по гидроксильной группе 3 ’ и 5 ’ углеродом атома (рис. 5).


Рис. 5 Фосфодиэфирная связь между отдельными нуклеотидами в цепочке нуклеиновой кислоты

Это очень важно для понимания того, каким образом нуклеотиды образуют нуклеиновую кислоту. Они соединяются друг с другом с помощью т. н. фосфодиэфирной связи.

Фосфодиэфирная связь

Два нуклеотида образуют динуклеотид путем конденсации. В результате между фосфатной группой одного нуклеотида и гидроксигруппой сахара другого образуется т. н. фосфодиэфирная связь (рис. 6).


Рис. 6. Фосфодиэфирная связь

При синтезе полинуклеотидной цепи эта реакция повторяется несколько миллионов раз. Таким образом, полинуклеотид (рис. 7) строится путем образования фосфодиэфирных мостиков между 3 ’ и 5 ’ углеродами сахаров.


Рис. 7. Полинуклеотид

Фосфодиэфирные мостики возникают за счёт прочных ковалентных связей, это сообщает всем полинуклеотидным цепям прочность и стабильность, что очень важно, поскольку уменьшается риск повреждения (поломки) молекул ДНК.

Итак, нуклеиновые кислоты – это биополимеры, которые состоят из мономеров – нуклеотидов. В состав нуклеотидов входят три основные части, а именно пятиуглеродный сахар – пентоза, азотистые основания и остаток фосфорной кислоты. В зависимости от природы пентозы различают ДНК и РНК.

В состав ДНК входят аденин, цитозин, гуанин и тимин.

В состав РНК входят аденин, цитозин, гуанин, урацил.

Объединение нуклеотидов в нуклеиновую кислоту идет за счёт образования фосфодиэфирных мостиков, или фосфодиэфирной связи.

Структура молекулы ДНК

Нуклеиновые кислоты, как и белки, имеют первичную, вторичную и третичную структуру. Первичная структура ДНК – это последовательность нуклеотидных остатков в полинуклеотидных цепях.

Вторичная структура – пространственная конфигурация полинуклеотидных цепей ДНК

В формировании вторичной структуры полинуклеотидной цепи важное значение имеют водородные связи, которые возникают на основе принципа комплементарности, то есть дополнительности или соответствия между парами оснований: аденином и тимином, гуанином и цитозином (рис. 8).


Рис. 8. Водородная связь и вторичная структура ДНК

Иллюстрация принципа комплементарности.

Эти комплементарные пары способны образовывать между собой прочные водородные связи. Так, между аденином и тимином формируются две водородные связи, а между гуанином и цитозином – три водородные связи.

В 1953 году Джеймс Уотсон и Френсис Крик предложили пространственную модель структуры ДНК (рис. 9).


Согласно этой модели, молекула ДНК представляет собой двухцепочечную правозакрученную спираль, состоящую из комплементарных друг другу антипараллельных цепей.

Между аденином и тимином возникают две водородные связи, а между гуанином и цитозином – три.

Третичная структура ДНК

У всех живых организмов молекула ДНК плотно упакована с образованием сложных трехмерных структур. Нахождение ДНК в суперспирализованном состоянии дает возможность сделать молекулу более компактной (рис. 10).


Рис. 10. Третичная структура ДНК. Сверхплотная упаковка ДНК с белками-гистонами образует хромосому

У всех живых организмов двуспиральная молекула ДНК плотно упакована и образует сложные трехмерные структуры (рис. 11).


Рис. 11. Модели двухцепочечных ДНК

Двухцепочная ДНК бактерий имеет кольцевидную форму и образует суперспираль. Суперспирализация необходима для упаковки громадной по клеточным меркам ДНК в малом объеме клетки.

Например, ДНК кишечной палочки имеет длину более 1 мм, в то время как длина клетки не превышает 5 мкм (в 1 мм = 1000 мкм) (рис. 12).



Рис. 12. ДНК в нуклеоиде бактерий (слева) и в клетках тела человека (справа)

Хромосомы эукариот представляют собой суперспирализованные линейные молекулы ДНК (рис. 13).


Рис. 13. Хромосомы эукариот

В процессе упаковки эукариотическая ДНК обматывает белки – гистоны, располагающиеся вдоль ДНК через определенные интервалы. Эти белки образуют нуклеосомы (рис. 14). Вторым уровнем пространственной организации ДНК является образование хроматина – волокон, из которых состоят хромосомы.


Рис. 14. Третичная структура ДНК

В ядре каждой клетки тела человека, кроме половых клеток, содержится 23 пары хромосом (рис. 15). На каждую из них приходится по одной молекуле ДНК. Длина всех 46 молекул ДНК в одной клетке человека почти равна двум метрам, а число нуклеотидных пар в ней 3,2 млрд.


Рис. 15. Хромосомы человека. Кариотип мужчины

Так что, если бы молекула ДНК не была организована в плотную структуру, то наша жизнь была бы невозможна геометрически.

Функции молекулы ДНК

Функции ДНК – хранение и передача наследственной информации.

Хранение наследственной информации. Порядок расположения нуклеотидных остатков в молекуле ДНК определяет последовательность аминокислот в молекуле белка. В молекуле ДНК зашифрована вся информация о признаках и свойствах нашего организма.

Передача наследственной информации следующему поколению. Эта функция осуществляется, благодаря способности молекулы ДНК к самоудвоению – репликации. ДНК может распадаться на две комплементарные цепочки, и на каждой из них на основе того же принципа комплементарности восстановится исходная последовательность нуклеотидов.

История открытия нуклеиновых кислот

В научной литературе посвященной изучению строению молекулы ДНК, как правило, упоминается Джеймс Уотсон и Френсис Крик (рис. 9).

Но первооткрывателями нуклеиновых кислот был Фридрих Иоганн Мишер (рис. 16), швейцарский ученый, который работал в Германии.


Рис. 16. Первооткрыватель нуклеиновых кислот

В 1869 году Мишер занимался изучением животных клеток – лейкоцитов. Для получения лейкоцитов он использовал гнойные повязки, которые ему доставлялись из больниц. Он брал гной, отмывал лейкоциты и выделял из них белок.

В процессе исследований Мишеру удалось установить, что кроме белков, в лейкоцитах содержится ещё какое-то неизвестное вещество.

Оно выделялось в виде нитевидного или хлопьевидного осадка при создании кислой среды. При добавлении щелочи этот осадок растворялся.

Исследуя препарат лейкоцитов под микроскопом, Мишер обнаружил, что в процессе отмывания лейкоцитов соляной кислотой от них остаются ядра. Он сделал вывод, что в ядрах имеется неизведанное вещество, то есть новое вещество, которое он назвал нуклеином, от слова nucleus – ядро.

Кроме этого, по данным химического анализа Мишер установил, что это новое вещество состоит из углерода, водорода, кислорода и фосфора. Фосфорорганических соединений в то время было известно очень мало, поэтому Мишер пришел к выводу, что открыл новый класс соединений в ядре.

Так в XIX веке стало известно о существовании нуклеиновых кислот, но тогда никто не мог предположить, какая огромная роль принадлежит нуклеиновым кислотам в сохранении разнообразия наследственных признаков организмов.

Вещество наследственности

Первые доказательства того, что молекула ДНК заслуживает довольно серьёзного внимания, были получены 1944 году группой бактериологов во главе с Освальдом Эвери. Он много лет изучал пневмококки – микроорганизмы, вызывающие воспаления легких, или пневмонию. Эвери смешивал два вида пневмококков, один из которых вызывал заболевание, а другой – нет. Предварительно болезнетворные клетки убивали, и затем добавляли к ним пневмококки, которые не вызывали заболевание.


Рис. 17. Опыты Эвери и Гриффитса

Результаты опытов были удивительны. Некоторые живые клетки после контакта с убитыми научились вызывать болезнь. Эвери удалось выяснить природу вещества, участвующего в процессе передачи информации от мертвых клеток живым (рис. 17). Этим веществом оказалась молекула ДНК.

Домашнее задание

1. Какие вещества называют нуклеиновыми кислотами?

2. Что такое ДНК? Какова роль ДНК в жизнедеятельности живых организмов?

3. В каких органоидах клетки содержится ДНК? Почему ДНК содержится в этих органоидах?

4. Какие химические особенности ДНК позволяют ей выполнять её биологические функции?

5. Что такое нуклеотид? Из чего он состоит?

6. Какие уровни структурной организации ДНК вам известны?

7. Какие возможности перед наукой и практикой были открыты благодаря установлению структуры и функций ДНК?

8. Почему за модель двойной спирали ДНК Д. Уотсон и Ф. Крик были награждены Нобелевской премией?

9. Какие ученые внесли вклад в изучение ДНК? Что они установили?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

2. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

3. Единая коллекция Цифровых Образовательных Ресурсов (Источник).

6. Интернет-портал Nobelprize.org (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

3. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. – 5-е изд., стереотип. – Дрофа, 2010. – 388 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Глава V. НУКЛЕИНОВЫЕ КИСЛОТЫ

§ 13. НУКЛЕИНОВЫЕ КИСЛОТЫ:

ФУНКЦИИ И СОСТАВ

Общие представления о нуклеиновых кислотах

Нуклеиновые кислоты – важнейшие биополимеры с относительной молекулярной массой, достигающей 5·10 9 . Они содержатся во всех без исключения живых организмах и являются не только хранителем и источником генетической информации, но и выполняют ряд других жизненно важных функций. Нуклеиновые кислоты – это полимеры, мономерными звеньями которых являются нуклеотиды.

Существует два различных типа нуклеиновых кислот – дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В клетках прокариот, кроме основной хромосомной ДНК, часто встречаются внехромосомные ДНК – плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Клетки эукариот содержат ДНК также в митохондриях и хлоропластах.

Интересно знать! Молекулы ДНК – самые крупные молекулы. Молекула ДНК E.coli состоит примерно из 4000000 пар нуклеотидов, ее относительная масса равна 26000000000, а длина - 1,4 мм, что в 700 раз превышает размеры ее клетки. Молекулы ДНК эукариот могут достигать еще больших размеров, их длина может составлять несколько см, а относительная масса 10 10 -10 11 . Чтобы записать нуклеотидную последовательность ДНК человека, потребуется около 1000000 страниц.

Что же касается РНК, то по выполняемым ими функциям различают:

1. информационные РНК (иРНК) - в них записана информация о первичной структуре белка;

2. рибосомные РНК (рРНК) - входят в состав рибосом;

3. транспортные РНК (тРНК) - обеспечивают доставку аминокислот к месту синтеза белка.

В качестве генетического материала РНК входят в состав ряда вирусов. Например, вирусы, вызывающие такие опасные заболевания, как грипп и СПИД, являются РНК-содержащими.

Нуклеиновые кислоты могут быть линейными и кольцевыми (ковалентно замкнутыми). Они могут состоять из одной или двух цепей. Ниже приведена схема, отражающая существование в природе различных типов нуклеиновых кислот:


Функции нуклеиновых кислот

Нуклеиновым кислотам присущи три важнейшие функции: хранение, передача и реализация генетической информации. Кроме этих, они выполняют и другие функции, например, участвуют в катализе некоторых химических реакций, осуществляют регуляцию реализации генетической информации, выполняют структурные функции и др. Роль хранителя генетической информации у большинства организмов (эукариот, прокариот, некоторых вирусов) выполняют двухцепочечные ДНК. Только у некоторых вирусов хранителем генетической информации являются одноцепочечные ДНК или одноцепочечные, а также двухцепочечные РНК. Генетическая информация записана в генах. Ген по своей природе является участком нуклеиновой кислоты. В них закодирована первичная структура белков. Гены могут также нести информацию о структуре некоторых типов РНК, например, тРНК и рРНК.

Генетическая информация передается от родителей к потомкам. Этот процесс связан с удвоением нуклеиновой кислоты (ДНК или РНК), выполняющей функцию хранителя генетической информации, и последующей передачи ее потомкам. Например, в результате деления дочерние клетки получают от материнской идентичные молекулы ДНК, а следовательно, и идентичную генетическую информацию (рис. 38). При размножении вирусы также передают дочерним вирусным частицам точные копии нуклеиновой кислоты. При половом размножении потомки получают генетическую информацию от обоих родителей. Вот почему дети наследуют признаки обоих родителей.


Рис. 38. Распределение ДНК при делении клетки

В результате реализации генетической информации происходит синтез белков, закодированных в ДНК в виде генов (или для некоторых вирусов – в РНК). В этом процессе информация о первичной структуре белка переписывается с молекулы ДНК на иРНК и затем расшифровывается на рибосомах при участии тРНК. В итоге образуется белок:

ДНК
РНК
белок.

Состав нуклеиновых кислот

Нуклеиновые кислоты представляют собой полимеры, построенные из нуклеотидов, соединенных между собой фосфодиэфирными связями. Каждый нуклеотид состоит из остатков азотистого основания, пентозы и фосфорной кислоты.

Различают пиримидиновые и пуриновые основания, называемые также соответственно пиримидины и пурины. Пиримидиновые основания являются производными пиримидина:


пуриновые основания – производными пурина:


К пиримидинам относятся урацил, тимин и цитозин, к пуринам – аденин и гуанин:


В состав ДНК входят тимин, цитозин, аденин и гуанин, в состав РНК – те же основания, только вместо тимина входит урацил. Кроме азотистых оснований, нуклеиновые кислоты содержат пентозы: ДНК – D-дезоксирибозу, а РНК – D-рибозу. Углеводы находятся в виде b-аномера фуранозной формы:


Азотистое основание связывается с углеводом за счет гликозидного гидроксила. Образуется нуклеозид. Схематически образование нуклеозида можно изобразить так:


В состав нуклеиновых кислот входят 8 нуклеозидов, 4 – в состав РНК и 4 – в состав ДНК (рис. 39).

Нуклеозиды, входящие в состав РНК:


Нуклеозиды, входящие в состав ДНК:


Рис. 39. Нуклеозиды

Нуклеозид, связанный с остатком фосфорной кислоты, называется нуклеотидом:


При этом остаток фосфорной кислоты может быть связан с 3’- или 5’- атомом углерода:


Сокращенно аденозин-5’-монофосфат обозначается как АМФ. Если нуклеотид образован дезоксорибозой, аденином и одним остатком фосфорной кислоты, то он будет носить название дезоксиаденозинмонофосфат, или сокращенно дАМФ. В таблице 5 представлена номенклатура нуклеотидов.

Номенклатура нуклеотидов, образующих ДНК и РНК

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.