Устойчивость к вирусным инфекциям

Более 40 миллионов человек по всему миру заражены вирусом иммунодефицита человека (ВИЧ). Если сразу после заражения иммунная система не успевает уничтожить все вирусные частицы, они могут проникнуть внутрь клеток и встроиться в их геном. В результате этого человек становится носителем инфекции. Хроническая ВИЧ инфекция на сегодняшний день неизлечима, однако поддается контролю и в случае своевременной терапии не оказывает сильного влияния на самочувствие человека.

Для проникновения в клетку ВИЧ должен связаться с двумя рецепторами на ее поверхности. Один из рецепторов – CD4, присутствует на поверхности T-лимфоцитов и отвечает за распознавание чужеродных агентов. Второй рецептор, необходимый для слияния оболочки вируса и клетки, - CCR5. Его роль в иммунной реакции до конца не изучена, предполагается, что он участвует в развитии воспалительной реакции.


У некоторых людей с рождения есть защита от ВИЧ, обусловленная наличием в их геноме мутаций. Это снижает риск развития хронической инфекции даже в случае заражения. Одной из них является мутация в гене рецептора CCR5, представляющая собой потерю части гена (32 нуклеотида) - ССR5Δ32. В результате вирус не может связаться с рецептором и проникнуть в клетку.

При этом риск развития хронической инфекции низкий только у гомозиготных носителей мутации - у тех, кому мутантный ген достался от обоих родителей. Существуют противоречивые данные о влиянии мутации только в одной копии гена CCR5 на риск развития ВИЧ: от наличия защиты до отсутствия какого-либо влияния на течение заболевания.


Предполагается, что мутация ССR5Δ32 возникла около 1000 лет назад в Северной Европе среди викингов. Распространение мутации в Европе обычно связывают с набегами викингов на соседние народы. Длительное время было непонятно, что способствовало распространению и закреплению мутации среди народов Европы, ведь ВИЧ — сравнительно молодая инфекция, и носители этой мутации не получали какого-либо преимущества. Однако впоследствие было обнаружено, что кроме ВИЧ эта мутация также снижает вероятность заразиться черной оспой, многочисленные эпидемии которой в свое время привели к массовой гибели людей по всему миру.

В настоящее время частота встречаемости этой мутации в странах Европы составляет около 10%. Частота мутации среди клиентов Genotek оказалась равной 9,7%. При этом только 1,1% людей оказались носителями мутации в двух копиях гена CCR5, они имеет низкий риск развития хронической инфекции даже в случае заражения.

Гомозиготное носительство делеции в гене CCR5 не является абсолютной защитой от заражения ВИЧ и поводом не использовать до- и пост-контактную профилактику при угрозе заражения. Известны единичные случаи, когда у людей с таким генотипом развивалось хроническое носительство ВИЧ после заражения. Возможно, это связано с тем, что кроме CCR5, вирус может использовать другие рецепторы для проникновения в клетки (например, рецептор СXCR4).


Один известный случай излечения человека от хронической ВИЧ инфекции связан с этой мутацией. Тимоти Браун, или Берлинский пациент, был заражен ВИЧ и болен лейкемией. Ему требовалась пересадка костного мозга. Врач смог подобрать донора, гомозиготного по мутации в CCR5. Через 20 месяцев после операции, несмотря на отсутствие терапии, ВИЧ перестал обнаруживаться в крови, костном мозге и слизистой оболочке кишечника пациента.

А совсем недавно российским ученым удалось получить человеческие эмбрионы с измененным геном CCR5, используя 16 оплодотворенных яйцеклеток не пригодных для программ ЭКО. Из 16 модифицированных яйцеклеток, только 8 продолжили развитие, причем в 5 из них модификация прошла успешно и обе копии гена были изменены.

А в ноябре 2018 года было распространено заявление ученого из Китая, которому якобы удалось провести аналогичный эксперимент, в результате которого родились девочки-близнецы, у одной из которых мутация в CCR5 присутствует в двух генах, а другой - только в одном. Родители близнецов приняли решение не раскрывать своих имен и места жительства, никаких других доказательств, кроме заявления врача, также нет.



Открытие этой мутации позволило приступить к разработке вакцины от СПИДа. Вакцина направлена на то, чтобы заблокировать этот белок и сделать клетку недоступной для вируса. Самая высокая частота мутации, которая портит ген и белок-рецептор, с которым связывается вирус иммунодефицита, в Северо-Западной Европе: у финнов, эстонцев и северных русских. Там число носителей этой мутации достигает 25%. Из них только небольшая часть имеет дефект в обеих копиях гена, а у остальных — одна дефектная и одна нормальная копия.

Носители одной дефектной копии не являются устойчивыми к инфекции, они все же заражаются этим вирусом при столкновении с ним. Но при заражении инфекция развивается у них медленнее, потому что у них все же меньшее количество рецепторов, вирус медленнее размножается. Когда мутация была обнаружена и выяснилось, что она встречается в основном у народов Европы, а у других народов эта мутация практически отсутствует, исследователи предположили, что в Европе она могла защищать людей от какой-то другой инфекции, например от чумы, свирепствовавшей в Европе в XIV веке. Это предположение не подтвердилось, и до сих пор неизвестно, какая же причина вызвала распространение этой мутации.

Некоторая ясность возникла при исследовании костных останков в захоронениях на территории Европы. Оказалось, что уже три тысячи лет назад частота этой мутации у европейского населения того времени была близка к современной. Значит, в Европе произошло что-то, что привело к повышению частоты мутации. Кроме устойчивости к инфекциям это могли быть случайные события, например изменение численности популяции, которое иногда приводит к росту совершенно нейтральных вариантов генов. Но эта мутация, видимо, все-таки была чем-то полезна и способствовала отбору.

Есть народы, которые пришли в Европу относительно недавно. Это евреи, расселившиеся со своей ближневосточной прародины две тысячи лет назад, и цыгане, которые около тысячи лет назад вышли из Индии и переселились в Европу. У евреев и цыган был приток генов от их европейских соседей. У евреев меньше, по некоторым оценкам до 20%, у цыган такой приток генов был больше. Но частоты этой мутации у них такие же, как у европейцев. Это говорит о том, что, когда они пришли в Европу, они столкнулись с тем же фактором, который действовал на людей, живших в Европе уже давно, и частота мутации у них повысилась. Но с каким именно фактором, до сих пор неизвестно.

Эта мутация изучается достаточно интенсивно и сейчас, но пока неизвестно, как она влияет на особенности работы иммунной системы. И предстоит узнать, от чего она защищает человека сейчас или защищала в далеком прошлом. Исследования, которые проводят генетики, помогают разрабатывать вакцины для профилактики инфицирования вирусом иммунодефицита человека.

Мы исследовали влияние этой мутации на выживаемость ВИЧ-инфицированных. Старшее поколение помнит трагедию, которая произошла в конце 1980-х годов в Советском Союзе, когда более двух сотен детей были инфицированы в больницах Элисты и Ростова-на-Дону. Врачи, наблюдавшие за этими детьми и лечившие их, все время отбирали образцы крови, для того чтобы определять вирусную нагрузку. Были проанализированы мутации (в ДНК, выделенной из этой крови), защищающие от ВИЧ-инфекции.

Оказалось, что у детей, являющихся носителями этой самой мутации в гене рецептора, с которым связывается вирус иммунодефицита, более низкий уровень смертности от ВИЧ. А сама группа ВИЧ-инфицированных имела более низкую частоту этой мутации, чем контрольная группа людей того же происхождения, живущих в том же регионе. Это свидетельствует о защитном действии мутации.

Однако разница невелика. Для того чтобы установить, достоверен ли защитный эффект, небольшой группы обследованных недостаточно, и приходится сравнивать результаты десятков исследований и использовать методы статистики, которые показывают, что в большинстве исследований частота мутаций у ВИЧ-инфицированных ниже, чем в контрольных группах того же происхождения. Эти различия не очень велики и, может быть, для эпидемиологии не очень значимы. Народы, у которых частота этой мутации самая высокая (25%), немного лучше защищены, чем население Африки или Азии, где такой мутации нет. Но различия на уровне населения в целом относительно невелики — снижение инфицируемости всего на 5% или 10%.

Кандидат биологических наук А. ЛУШНИКОВА. По материалам "Scientific American".

Иголка в стоге сена

Генетикам давно известны гены устойчивости к некоторым вирусам у мышей, например к вирусу лейкоза. Но существуют ли подобные гены у человека, и если да, то какова их роль в защите против СПИДа?

Стивен О'Брайн и Михаэль Дин со своими коллегами из Национального института рака США много лет вели поиск таких генов у человека.

В начале 80-х годов американские ученые исследовали множество людей, которые по тем или иным причинам могли заразиться вирусом иммунодефицита. Они проанализировали тысячи образцов крови и обнаружили, казалось бы, необъяснимое явление: у 10-25% обследованных вирус вообще не выявляется, а около 1% носителей ВИЧ - относительно здоровы, признаки СПИДа у них либо отсутствуют, либо выражены очень слабо, а иммунная система в полном порядке. Неужели существует какая-то устойчивость к вирусу у некоторых людей? И если да, то с чем она связана?

Опыты на лабораторных мышах, крысах, морских свинках и кроликах показали, что устойчивость к различным вирусным инфекциям часто определяется целым набором генов. Оказалось, что сходный механизм определяет и устойчивость к вирусу иммунодефицита человека.

Известно, что многие гены ответственны за выработку определенных белков. Часто бывает, что один и тот же ген существует в нескольких измененных вариантах. Такие "многоликие" гены называются полиморфными, а их варианты могут отвечать за выработку различных белков, которые по-разному ведут себя в клетке.

Сравнив восприимчивость к вирусам у мышей, несущих множество разнообразных наборов генов, и у мышей с небольшим числом генных вариантов, ученые пришли к выводу, что чем разнороднее генетически были животные, тем реже они заражались вирусом. В таком случае можно предположить, что в генетически разнообразных человеческих популяциях генные варианты, определяющие устойчивость к ВИЧ, должны встречаться достаточно часто. Анализ заболеваемости СПИДом среди американцев различных национальностей выявил еще одну особенность: более устойчивы американцы европейского происхождения, у африканцев и азиатов устойчивость близка к нулю. Чем объяснить такие различия?

Ответ на этот вопрос предложил в середине 80-х годов американский вирусолог Джей Леви из Калифорнийского университета в Сан-Франциско. Леви и его коллеги пытались выяснить, какие именно клетки в организме поражает вирус. Они обнаружили, что после того, как вирус заражает иммунные клетки, они легко узнаются иммунными клетками другого типа, так называемыми Т-киллерами (убийцами). Киллеры разрушают зараженные вирусом клетки, препятствуя дальнейшему размножению вируса. Клетки-убийцы несут на своей поверхности особую молекулу - рецептор CD8. Она, как принимающая антенна, "узнает" сигналы от клеток, зараженных вирусом, и клетки-убийцы уничтожают их. Если из крови удалить все клетки, несущие молекулу CD8, то вскоре в организме обнаруживаются многочисленные вирусные частицы, происходит быстрое размножение вируса и разрушение лимфоцитов. Не в этом ли ключ к разгадке?

В 1995 году группа американских ученых под руководством Р. Галло обнаружила вещества, которые вырабатываются в клетках-киллерах, несущих молекулы CD8, и подавляют размножение ВИЧ. Защитные вещества оказались гормоноподобными молекулами, называемыми хемокинами. Это небольшие белки, которые прикрепляются к молекулам-рецепторам на поверхности иммунных клеток, когда клетки направляются к месту воспаления или заражения. Оставалось найти "ворота", сквозь которые проникают в иммунные клетки вирусные частицы, то есть понять, с какими именно рецепторами взаимодействуют хемокины.

Ахиллесова пята иммунных клеток

Вскоре после открытия хемокинов Эдвард Бергер, биохимик из Национального института аллергических и инфекционных болезней в Бетезде, США, обнаружил в иммунных клетках, в первую очередь поражаемых вирусом (их называют клетки-мишени), сложный по строению белок. Этот белок как бы пронизывает мембраны клеток и содействует "посадке" и слиянию вирусных частиц с оболочкой иммунных клеток. Бергер назвал этот белок "фузин", от английского слова fusion - слияние. Оказалось, что фузин родствен белкам-рецепторам хемокинов. Не служит ли этот белок "входными воротами" иммунных клеток, через которые вирус проникает внутрь? В таком случае взаимодействие с фузином какого-нибудь другого вещества закроет доступ вирусным частицам в клетку: представьте, что в скважину замка вставляется ключ, и вирусная "лазейка" исчезает. Казалось бы, все встало на свои места, и взаимосвязь хемокины - фузин - ВИЧ уже не вызывала сомнений. Но верна ли эта схема для всех типов клеток, зараженных вирусом?

Пока молекулярные биологи распутывали сложный клубок событий, происходящих на поверхности клеток, генетики продолжали поиск генов устойчивости к вирусу иммунодефицита у людей. Американские исследователи из Национального института рака получили культуры клеток крови и различных тканей от сотен пациентов, зараженных ВИЧ. Из этих клеток выделили ДНК для поиска генов устойчивости.

Чтобы понять, насколько сложна эта задача, достаточно вспомнить, что в хромосомах человека содержится около 100 тысяч различных генов. Проверка хотя бы сотой доли этих генов потребовала бы нескольких лет напряженной работы. Круг генов-кандидатов заметно сузился, когда ученые сосредоточили свое внимание на клетках, которые прежде всего поражает вирус, - так называемых клетках-мишенях.

Уравнение со многими неизвестными

Одна из особенностей вируса иммунодефицита заключается в том, что его гены внедряются в наследственное вещество зараженной клетки и "затаиваются" там на время. Пока эта клетка растет и размножается, вирусные гены воспроизводятся вместе с собственными генами клетки. Затем они попадают в дочерние клетки и заражают их.

Из множества людей с высоким риском заражения ВИЧ отобрали зараженных вирусом и тех, кто не стал носителем ВИЧ, несмотря на постоянные контакты с больными. Среди зараженных выделили группы относительно здоровых и людей с быстро развивающимися признаками СПИДа, которые страдали сопутствующими заболеваниями: пневмонией, раком кожи и другими. Ученые изучили разные варианты взаимодействия вируса с организмом человека. Различный исход этого взаимодействия, по-видимому, зависел от набора генов у обследованных людей.

Выяснилось, что люди, устойчивые к СПИДу, имеют мутантные, измененные гены рецептора хемокинов - молекулы, к которой прикрепляется вирус, чтобы проникнуть в иммунную клетку. У них контакт иммунной клетки с вирусом невозможен, поскольку нет "принимающего устройства".

В это же время бельгийские ученые Михаэль Симпсон и Марк Парментье выделили ген другого рецептора. Им оказался белок, который также служит рецептором для связывания ВИЧ на поверхности иммунных клеток. Только взаимодействие этих двух молекул-рецепторов на поверхности иммунной клетки создает "посадочную площадку" для вируса.

Итак, основными "виновниками" заражения клеток вирусом иммунодефицита служат молекулы-рецепторы, названные CCR5 и CD4. Возник вопрос: что происходит с этими рецепторами при устойчивости к ВИЧ?

В июле 1996 года американская исследовательница Мэри Керингтон из Института рака сообщила, что нормальный ген рецептора ССR5 обнаруживается лишь у 1/5 обследованных ею пациентов. Дальнейший поиск вариантов этого гена среди двух тысяч больных дал удивительные результаты. Оказалось, что у 3% людей, не заразившихся вирусом, несмотря на контакты с больными, ген рецептора ССR5 измененный, мутантный. Например, при обследовании двух нью-йоркских гомосексуалистов - здоровых, несмотря на контакты с зараженными, выяснилось, что в их клетках образуется мутантный белок CCR5, не способный взаимодействовать с вирусными частицами. Подобные генетические варианты были найдены лишь у американцев европейского происхождения или у выходцев из западной Азии, у американцев же африканского и восточноазиатского происхождения не нашли "защитных" генов.

Оказалось также, что устойчивость некоторых пациентов к инфекции лишь временная, если они получили "спасительную" мутацию только от одного из своих родителей. Через несколько лет после заражения количество иммунных клеток в крови таких пациентов снижалось в 5 раз, и на этом фоне развивались сопутствующие СПИДу осложнения. Таким образом, неуязвимыми для ВИЧ были только носители сразу двух мутантных генов.

Но у обладателей одного мутантного гена признаки СПИДа все же развивались медленнее, чем у носителей двух нормальных генов, и такие больные лучше поддавались лечению.

Не так давно исследователи обнаружили разновидности чрезвычайно агрессивных вирусов. Людей, зараженных такими вирусами, не спасает даже присутствие двух мутантных генов, обеспечивающих устойчивость к ВИЧ.

Это заставляет продолжать поиск генов устойчивости к ВИЧ. Недавно американские исследователи О'Брайн и М. Дин с коллегами обнаружили ген, который, присутствуя у людей лишь в одной копии, задерживает развитие СПИДа на 2-3 года и более. Значит ли это, что появилось новое оружие в борьбе с вирусом, вызывающим СПИД? Скорее всего, ученые приоткрыли еще одну завесу над загадками ВИЧ, и это поможет медикам в поисках средств лечения "чумы ХХ века". В многочисленных популяциях американцев афро-азиатского происхождения мутантные гены так и не найдены, но тем не менее есть небольшие группы здоровых людей, контактировавших с зараженными. Это говорит о существовании других генов защиты иммунной системы от страшной инфекции. Пока можно лишь предполагать, что в различных популяциях человека сложились свои системы генетической защиты. По-видимому, и для других инфекционных заболеваний, включая вирусный гепатит, также имеются гены устойчивости к вирусам-возбудителям. Теперь уже никто из генетиков не сомневается в существовании таких генов для вируса иммунодефицита. Исследования последних лет дали надежду найти решение такой, казалось бы, неразрешимой проблемы, как борьба со СПИДом. Кто станет победителем в противоборстве ВИЧ - человек, покажет будущее.

КАК ЛЕЧИТЬ СПИД. ПОИСК СТРАТЕГИИ

Результаты исследований последних лет заставили задуматься не только ученых и практических врачей, занимающихся проблемами СПИДа, но и фармацевтов. Раньше основное внимание уделялось комбинированному лечению инфекции, направленному против вируса. Применялись препараты, препятствующие размножению вируса в клетке: невипарин и атевирдин. Это так называемая группа ингибиторов обратной транскриптазы ВИЧ, которые не дают наследственному материалу вируса внедряться в ДНК иммунных клеток. Их сочетают с аналогами нуклеозидов типа зидовудина, диданозина и ставудина, которые облегчают течение болезни. Однако эти средства токсичны и обладают побочными действиями на организм, поэтому их нельзя считать оптимальными. Им на смену все чаще приходят более совершенные средства воздействия на ВИЧ.

В последнее время появилась возможность препятствовать "посадке" вирусных частиц на поверхность клеток. Известно, что этот процесс происходит за счет связывания вирусного белка gр120 с клеточными рецепторами. Искусственное блокирование мест связывания ВИЧ с помощью хемокинов должно защищать клетки от вторжения ВИЧ. Для этого нужно разработать специальные препараты-блокаторы.

Другой путь - получение антител, которые будут связываться с рецепторами ССR5, создающими "посадочную площадку". Такие антитела будут препятствовать взаимодействию этих рецепторов с вирусом, не давая доступа ВИЧ в клетки. Кроме того, можно вводить в организм фрагменты молекул ССR5. В ответ на это иммунная система начнет вырабатывать антитела к данному белку, которые также перекроют доступ к нему вирусных частиц.

Наиболее дорогостоящий способ обезопасить вирусные частицы - ввести в иммунные клетки новые мутантные гены. В результате сборка рецептора для "посадки" вируса на поверхности "оперированных" клеток прекратится, и вирусные частицы не смогут заразить такие клетки. Подобная защищающая терапия, по-видимому, наиболее перспективна при лечении больных СПИДом, хотя и весьма дорого стоит.

При лечении сопровождающих СПИД раковых заболеваний врачи чаще всего прибегают к высоким дозам химических препаратов и к облучению опухолей, что нарушает кроветворение и требует пересадки больным здорового костного мозга. А что, если в качестве донорских кроветворных клеток пересадить больному костный мозг, взятый от людей, генетически устойчивых к инфекции ВИЧ? Можно предположить, что после такой пересадки распространение вируса в организме пациента будет остановлено: ведь донорские клетки устойчивы к инфекции, поскольку не имеют рецепторов, позволяющих вирусу проникнуть через клеточную мембрану. Однако эту привлекательную идею вряд ли удастся воплотить в практику полностью. Дело в том, что иммунологические различия между пациентом и донором, как правило, приводят к отторжению пересаженной ткани, а иногда и к более серьезным последствиям, когда донорские клетки атакуют чужеродные для них клетки реципиента, вызывая их массовую гибель.

Т-киллеры - иммунные клетки, которые уничтожают зараженные вирусом клетки.

Рецепторы клеток - особые молекулы на поверхности, которые служат "опознавательным знаком" для вирусных частиц и других клеток.

Ген рецептора - ген, ответственный за выработку соответствующего белка.

Хемокины - гормоноподобные вещества на поверхности иммунных клеток, которые подавляют размножение вируса в организме.

Культура клеток - клетки, развивающиеся вне организма, в питательной среде пробирки.

Мутантные гены - измененные гены, не способные контролировать выработку нужного белка.

Клетки-мишени - иммунные клетки, которые в первую очередь поражает вирус.

- Сегодня в мире 29 миллионов зараженных вирусом иммунодефицита. 1,5 миллиона человек уже умерли от вызванного этим заражением СПИДа.

- Самый неблагополучный по СПИДу регион - Африка. В Европе лидируют Испания, Италия, Франция, Германия. С 1997 года к этим странам присоединилась Россия. На территории бывшего СССР зараженность ВИЧ распределяется так: 70% - Украина, 18,2% - Россия, 5,4% - Беларусь, 1,9% - Молдова, 1,3% - Казахстан, остальные - менее 0,5%.

- К 1 декабря 1997 года в России официально зарегистрировано около 7000 зараженных вирусом иммунодефицита, в основном при передаче инфекции половым путем.

- В России и странах ближнего зарубежья существует более 80 центров по профилактике и борьбе со СПИДом.

Устойчивость к вирусным болезням

Ну хорошо, если трудно бороться с возбудителем (а это и впрямь нелегко), то нельзя ли сделать так, чтобы само растение препятствовало распространению вируса более активно? То есть наделить растение способностью к самозащите!

На этот вопрос любой мало–мальски знакомый с предметом человек сразу же ответит, что, конечно, сделать это можно; более того, так веками и делают люди, называемые селекционерами, что среди прочих полезных человеку признаков они ищут и отбирают также и признаки устойчивости к тому или иному заболеванию. Все это правильно, вот только традиционная селекция – дело очень небыстрое, нелегкое и неблагодарное, хотя результат, конечно же, неоспорим. Самое же главное заключается в том, что, выводя, к примеру, сорт яблони с крупными, медового вкуса плодами, просвечивающими на солнце так, что видны семечки – выстраивая годами сложнейшую комбинацию генов, обеспечивающих эту красоту – легко потерять гены устойчивости к тому или иному заболеванию.

Но в настоящее время появились новые возможности, которых не было у традиционной селекции. Методами генетической инженерии из растений, животных или микроорганизмов выделяют нужный ген и тем или иным способом внедряют его в хромосому растения, свойства которого предполагается изменить (модифицировать).

Таким образом генетически модифицированное (трансгенное) растение будет содержать среди своих "родных" генов чужеродный ген, проявление которого приведет к появлению нового признака у модифицированного растения. Предполагается при этом, что все другие полезные для человека признаки останутся в неизменном виде. Интенсивное развитие научных исследований в области биотехнологии и генетической инженерии уже привело к внедрению генетически модифицированных растений в практику земледелия. Площади под ними в мировом земледелии возросли с 1,7 миллионов гектаров в 1996 году до 52,6 миллионов к 2001 году, то есть в 30 раз. Львиная доля площадей, занятых под трансгенные растения, приходится на США и Аргентину; а из культур – на сою, кукурузу, хлопчатник и рапс. Главный признак, который подвергается генетической модификации, – это устойчивость к гербицидам. После обработки таких посевов гербицидами сорняки погибают, а культурные растения нет, потому что они устойчивы к гербицидам благодаря внедренному в них гену.

Разработаны и методы получения генетически модифицированных растений, устойчивых к вирусным заболеваниям.

Один из способов создания противовирусной устойчивости заключается в том, что в растение внедряют ген белка оболочки вируса. Казалось бы, полная чепуха. От вируса надо избавиться, а тут. Но оказалось, что такой прием хорошо работает.

В клетке генетически модифицированного растения вырабатывается много вирусного белка. Клетка настолько перекормлена этим белком, что, когда в нее попадает вирус с тем же белком оболочки, она просто не выдерживает и не позволяет вновь прибывшему раздеться – у нее все места на вешалке уже заняты. А вирусу совершенно необходимо снять верхнюю одежду, чтобы обнажить нуклеиновую кислоту и начать инфекционный процесс. Или могут принять пальто, но не пустят дальше гардероба – там, дальше, и так уже толпа из таких же точно вирусных белков. Вирус полностью зависит от клетки, и, если нет возможности образовать полноценные вирусные частицы, инфекция прервется, не начавшись.

Например, генетически модифицированные деревья сливы, с внедренным геном белка оболочки вируса шарки, сливы не заражались этим вирусом. Вот тля, только что покормленная вирусом. Вот она садится на сливовый лист и начинает питаться соком растения. Все идет как обычно, но растение, в отличие от немодифицированного, остается практически здоровым. Вирус оказывается неспособен распространиться даже по тому листу, на котором питалась тля, а в других листьях его не нашли и через два года.

Все было бы хорошо, да только вирусов много. Белок оболочки вируса шарки сливы, образующийся в клетках генетически модифицированного растения, защитит от заражения только этим вирусом. А от другого вируса он не защитит, потому что белки оболочки у всех вирусов разные.

Но при вирусной инфекции образуется не только белок оболочки. Продвижение вируса из клетки в клетку обеспечивает транспортный белок вируса. Он расширяет плазмодесму – коридор, соединяющий клетки, и, таким образом, дает возможность вирусу передвигаться из одной клетки в другую. Если в растение встроить ген дефектного транспортного белка, то он займет все места возле плазмодесмы, но плазмодесму не расширит и не позволит нормальному транспортному белку даже приблизиться к плазмодесме. Обнаружилось, что ген дефектного транспортного белка вируса табачной мозаики, внедренный в растения, создает устойчивость не только к вирусу табачной мозаики, но и ко многим другим, совершенно неродственным вирусам. Да, конечно, вирус может проникнуть в растение, но окажется не в состоянии распространяться по нему, а это равносильно отсутствию инфекции.

Разработано немало других способов придать растению устойчивость к вирусным заболеваниям. Получены, например, растения томатов, устойчивые к тле. Значит, тля не сможет передать растению вирусы, переносчиком которых она является.

В определенных условиях вирус ВИЧ может выживать вне тела в течение нескольких недель.

Выживание зависит от того, в какой биологической жидкости организма он находится, объема этой жидкости в организме, концентрации вируса в нем, температуры, кислотности и воздействия солнечного света и влажности.

Вопросы, касающиеся выживаемости ВИЧ вне тела, часто беспокоят людей, у которых был контакт с биологическими жидкостями организма. Опасения по поводу случайной передачи ВИЧ также сводят с ума многих людей из-за возможности случайного контакта с пролитой кровью, засохшей кровью или другими биологическими жидкостями, даже в микроскопических количествах.

Важно иметь в виду, что, хотя ВИЧ может жить некоторое время вне организма, не зарегистрировано заражений ВИЧ в следствие контакта с пролитыми кровью, спермой или другими биологическими жидкостями, хотя многие медицинские работники вступают в контакт с ВИЧ-инфицированными биологическими жидкостями (речь именно о пролитых, лежащих на поверхности, а не в игле например).

Тем не менее, осознание возможной персистенции (сохранение вируса в функционально активном состоянии) жизнеспособного ВИЧ в жидкостях организма требует санитарно-эпидемиологического контроля за безопасностью медицинских процедур.

ВИЧ не проникает через неповрежденную кожу.

  • В-четвертых, в биологической жидкости, выделениях человека должно быть достаточное количество вируса. Поэтому ВИЧ не передается через слюну, мочу, слезы, там недостаточная концентрация вируса ВИЧ необходимая для заражения.

Даже, если ты просто дотронулся до шприца с остатками ВИЧ-инфицированной крови — ты не заразишься.

  • от солнца и УФ-излучения;
  • от мыла, спирта, йода, растворе бриллиантового зеленого (зелёнке);
  • от температуры свыше 60 градусов С, кипячения;
  • постепенно в щелочной или кислой среде: при рН ниже 7 или выше 8*.
  • в пепси-коле, кока-коле, т.к. их рН кислый, около 3.
  • постепенно в морской воде.

*Вот почему риск заражения ВИЧ-инфекцией здоровой женщины понижается при соответствующей степени кислотности вагинальной жидкости.


Таблица. Устойчивость ВИЧ во внешней среде.

  • ВИЧ может выживать в шприцах до 7 дней при температуре от 27⁰C до 37⁰C.
  • ВИЧ может выживать до месяца в шприцах после того, как в них была набрана и выпущена ВИЧ-инфицированная кровь.

«Выживание ВИЧ-1 в шприцах«. Абдала Н, Стивенс П.С., Гриффит Б.П., Хеймер Р. Департамент эпидемиологии и общественного здравоохранения, Медицинский факультет Йельского университета, Нью-Хейвен, Коннектикут, 06520-8034, США.

Исследование крови, собранной из более, чем 800 шприцев с остатками крови и хранившихся разные промежутки времени показало, что ВИЧ можно выделить из 10% шприцев после 11 дней из количества крови менее 2 микролитров, но 53% шприцев содержали 20 микролитров крови. Дольшее выживание ВИЧ было связано с хранением при более низких температурах (менее 4 гр.С), при более высоких температурах (от 27 до 37 градусов) вирус СПИДа погибал 100% через 7 дней.

«Данное исследование было проведено для определения влияния температуры хранения на выживаемость ВИЧ-1 внутри шприцев. При 40 гр. С 50% всех шприцев содержали жизнеспособный ВИЧ-1 при 42 днях хранения, что является самым длительным испытанным сроком хранения.

При комнатной температуре (20 градусов C) последний день, когда шприцы с 2 мкл зараженной крови были положительными, был 21-й день, и жизнеспособный ВИЧ-1 был извлечен из 8% шприцев.

Последним днем, когда шприцы с 20 мкл были положительными, был 42-й день, и жизнеспособный ВИЧ-1 был извлечен из 8% шприцев.

Выше комнатной температуры (27, 32 и 37 градусов C) вероятность попадания шприцов с жизнеспособным ВИЧ-1, когда сроки хранения превышали 1 неделю, снизилась до менее 1%.

  • При комнатной температуре в капле крови ВИЧ чувствует себя стабильно и может прожить неделю в высохшей крови при 4 гр. С.
  • Не проводились исследования выживаемости ВИЧ в семенной жидкости вне тела, но при исследованиях в лаборатории, в сперме вне тела обнаруживалась очень малая концентрация вируса ВИЧ.
  • ВИЧ может выжить в органах и трупах до 2 недель.
  • Вирус СПИДа способный к заражению был выделен из человеческих трупов между 11 и 16 днями после смерти, трупы хранились при температуре 2 гр. С. Пока не ясно как долго ВИЧ может выживать в разлагающихся трупах при комнатной температуре, но ВИЧ был выделен из органов, хранившихся при температуре 20 гр.С вплоть до 14 дня хранения после смерти. ВИЧ не был обнаружен в достаточных количествах для заражения после 16 дней хранения, что указывает на меньшую опасность таких трупов для могильщиков и патологоанатомов.
  • ВИЧ может выжить только при pH от 7 до 8, оптимально для него 7,1. Вот почему он плохо выживает в соплях, моче, блевотине, рвотных массах.
  • ВИЧ не погибает от холода, чем ниже температура тем выше вероятность выживания ВИЧ.
  • ВИЧ сохраняется при очень низких температурах, при глубокой заморозке прекрасно сохраняется, например при заморозке вируса СПИДа (ВИЧ, вирус ВИЧ — это одно и тоже) при минус 70 гр. вирус прекрасно сохранялся и не терял свои заражающие свойства.

Вода сама по себе разрушает ВИЧ и быстро снижает заразность вируса. Исследование Мура (Moore) показывает, что водопроводная вода не благоприятна для выживания ВИЧ и что хлорированная вода деактивирует вирус полностью.

ВИЧ теряет свою заразность в течение нескольких часов после погружения в водопроводную воду.

Осмотическое давление воды нарушает белково-липидную мембрану, необходимую ВИЧ для заражения клеток-мишеней. Хлор и аммиак, которые присутствуют в водопроводной воде и сточных водах, могут действовать как вируциды для уничтожения ВИЧ.
Ни одно исследование не дало жизнеспособного, обычного сценария передачи ВИЧ через сточные воды или через биотходы оставшиеся от очистки сточных вод.

Ученые изучили выживание ВИЧ в фекалиях, сточных водах и отходах биологического происхождения с помощью посева образцов вируса ВИЧ непосредственно в эти среды.

Важно отметить, что в отобранных пробах сточных вод содержалось гораздо большее количество вируса, чем в городской системе сбора и очистки сточных вод.
Casson et. и др. высеяли ВИЧ в образцах нехлорированных вторичных сточных вод из обычных очистных сооружений. Высеяный вирус потерял большую часть своей инфекционности в течение 48 часов. Результаты были сходными в образцах первичных стоков контаминированных ВИЧ. В одном экспериментальном наборе, свободный и связанный с клетками ВИЧ, посеянный в дехлорированной водопроводной воде, потерял 90 процентов
инфекционность в течение двух часов и 99,9 процента инфекционности в течение восьми часов.

В другом эксперименте, в ходе которого кровь с ВИЧ, попала в водопроводную воду, был найден ВИЧ не способный к заражению. Таким образом, сама вода является неблагоприятной средой для заражения ВИЧ.
ВИЧ не был обнаружен в образцах реальных неочищенных сточных вод, собранных из городских очистных сооружения. Палмер и соавт. не обнаружили определяемых уровней ВИЧ, несмотря на исследование потоков в который сливались сточные воды из по крайней мере одного крупного медицинского исследовательского учреждения. Даже большое количество загрязненной крови, сбрасываемой в канализацию, разбавляется гораздо большим потоком воды в системе канализации.
Также многие медицинские учреждения дезинфицируют
материал до утилизации. В любом случае, хрупкость и зависимость ВИЧ от хозяина исключают выживание вируса в канализационной системе и очистке сточных вод.

Однако, исследователь Тамес Вотер доказал, что ВИЧ может выживать в сточных водах в течении нескольких дней в ЛАБОРАТОРНЫХ условиях.

«Выживание вируса иммунодефицита человека в воде, сточных водах и морской воде«. Slade, J.S. & Pike, E.B. & Eglin, R.P. & Colbourne, J.S. & Kurtz, J.B .. (1989). Water Science & Technology. 21. 55-59. 10,2166 / wst.1989.0078:

«Обработка питьевой воды служит эффективным барьером против передачи водой кишечных вирусов. В современной практике достигается стандарт менее 1 культивируемого энтеровируса на 1000 литров очищенной воды. Вероятная восприимчивость ВИЧ к процессам очистки воды была определена в лаборатории путем сравнения его устойчивости к воздействию окружающей среды с полиовирусом 2, для которого количественная информация уже существует. ВИЧ, культивируемый в линии Т-клеток человека, добавляли к образцам дехлорированной питьевой воды, осажденных неочищенных сточных вод и морской воды. Их инкубировали при 16 ° С и отбирали пробы в течение 11 дней. ВИЧ определяли путем серийного разведения и пересева с последующим анализом флуоресцентных антител к инфицированным клеткам и с помощью иммуноферментного анализа на антиген p24. Выживаемость вируса простого герпеса и полиовируса типа 2 анализировали параллельно. Среднее время, необходимое для десятикратного снижения концентрации ВИЧ, рассчитывалось как 1,8 дня в водопроводной воде, 2,9 дня в сточных водах, 1,6 дня в морской воде и 1,3 дня в контролях жидкости для тканевых культур. 10-кратное разложение полиовируса 2 произошло через 23-30 дней в сточных водах, морской воде и тканевой культуральной жидкости, но в водопроводной воде не было значительного снижения в течение 30 дней. Простой герпес был наиболее чувствительным вирусом, для удаления которого в сточных водах требовалось всего 1,4 дня. Контроли в жидкости для тканевых культур не показали значительных изменений в течение 7 дней. Эти тесты показывают, что, хотя ВИЧ был более устойчивым, чем вирус простого герпеса, когда он был связан с органическим веществом, обнаруженным в сточных водах, он был более чувствительным, чем полиовирус, энтеровирус, широко используемый в качестве показателя эффективности процессов очистки воды. Такая чувствительность делает крайне маловероятным, чтобы ВИЧ представлял какую-либо угрозу для дезинфицированного водоснабжения.«

Для написания статьи дополнительно использовались следующие источники:

  1. Van Bueren Survival of HIV and inactivation by heat and chemical disinfectants. Eighth Int Conf AIDS, Amsterdam, abstract PoA 2401, 1992
  2. Tjotta E Survival of HIV–1 activity after disinfection, temperature and pH changes or drying. J Medical Virology 35(4): 223–227, 1991
  3. Abdala N et al. Survival of HIV-1 in syringes. J Acquir Immune Defic Syndr Hum Retrovirol 20(1):73-80, 1999
  4. Voeller B Heterosexual transmission of HIV. JAMA 267(14):1917-8, 1992
  5. Advisory Committee on Dangerous Pathogens HIV — the causative agent of AIDS and related conditions. Department of Health, 1990
  6. Slade JS et al. The survival of human immunodeficiency virus in water, sewage and sea water. Water Science and Technology 21(3): 55-59, 1989
  7. Ball J et al. Long lasting viability of HIV after patient’s death. Lancet 338: 63, 1991
  8. Nyberg M et al. Isolation of human immunodeficiency virus (HIV) at autopsy one to six days post–mortem. Am J Clin Pathol 94(4): 422–425, 1990
  9. Thompson SC et al. Blood-borne viruses and their survival in the environment: is public concern about community needlestick exposures justified? Aust N Z J Public Health. 27(6):602-7, 2003

Эти данные не учитывают такие факторы, как доза вируса, необходимая для заражения ВИЧ, развития ВИЧ-инфекции или вероятности того, что вирус достигнет клеток-мишеней, если предположить, что кожа повреждена.

Только потому, что человек вступает в контакт с крошечными количествами ВИЧ в засохшей крови, это не означает, что произойдет заражение.

Влияние этих условий окружающей среды, таких как ветер, дождь и т. д., не учитываются в этих лабораторных исследованиях, а они также могут иметь значение.

Опасения по поводу контакта с кровью из трупов могут быть более реалистичными в зависимости от количества присутствующей крови и с учетом доказательств долгосрочной выживаемости ВИЧ после смерти.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.