Тип организации вирусов это

Размеры вирусов колеблются от 10 до 300 нм. Форма вирусов разнообразна: шаровидная, палочковидная, нитевидная, цилиндрическая и др.

Вирусы могут существовать в двух формах:

Вирионы вирусов состоят из различных компонентов:

Вирусы содержат всегда один тип нуклеиновой кислоты — либо ДНК, либо РНК. Причем обе нуклеиновые кислоты могут быть как одноцепочечными, так и двухцепочечными, как линейными, так и кольцевыми.

В зависимости от типа нуклеиновой кислоты, входящей в состав вируса, различают:

Капсид представляет собой оболочку вируса, образованную белковыми субъединицами, уложенными строго определенным образом.

Капсид выполняет, прежде всего, защитную функцию. Он защищает нуклеиновую кислоту вируса от различных воздействий, прежде всегоот действия многочисленных нуклеаз[39]. Кроме того, капсид обеспечивает осаждение вируса на поверхности клеточных мембран, так как содержит рецепторы, комплементарные рецепторам мембран клеток. Рецепторный механизм проникновения вируса в клетку обеспечивает специфичность вирусов: они поражают строго определенный круг хозяев.

Суперкапсид характерен для сложноорганизованных вирусов (вирусы ВИЧ, гриппа, герпеса). Возникает во время выхода вируса из клетки-хозяина. Он представляет собой модифицированный участок ядерной или наружной цитоплазматической мембраны клетки-хозяина.

Репродукция вирусов

Только внедряясь в клетку-хозяина вирус может воспроизводить себе подобных, он подавляет процессы транскрипции и трансляции веществ, необходимых самой клетке, и "заставляет" ее ферментные системы осуществлять репликацию своей нуклеиновой кислоты и биосинтез белков вирусных оболочек. После сборки вирусных частиц клетка либо погибает, либо продолжает существовать и производить новые поколения вирусных частиц.

Цикл репродукции вируса складывается из нескольких стадий.

Проникновение фагов происходит за счет частичного разрушения оболочки клетки фаговым лизоцимом. ДНК вируса проникает в клетку после сократительной реакции отростка фага.

¨ Подготовительный. На этом этапе происходит подавление функционирования генетического аппарата клетки, прекращается синтез белков и нуклеиновых кислот клетки, белок-синтезирующий аппарат клетки переводится под контроль генома вируса.

¨ Репликация нуклеиновой кислоты вируса. Поскольку генетический аппарат вирусов разнообразен, механизмы репликации различны. У двухцепочечных ДНК-геномных вирусов репликация происходит так же, как у всех живых организмов.

¨ Синтез белков капсида. Биосинтез белков капсида вируса начинается позже репликации, причем используется белоксинтезирующий аппарат клетки-хозяина.

Значение вирусов

Вирусы способны поражать большинство существующих живых организмов, вызывая различные заболевания. К числу вирусных заболеваний человека относятся, например, оспа, бешенство, детский паралич, корь, желтая лихорадка, инфекционный насморк и т.д. У животных известно поражение вирусом коровьей оспы и др. У растений вирусы могут определять пятнистость окраски цветков (например, у тюльпана), изменения окраски листьев (желтуха растений).

Некоторые вирусы (бактериофаги) являются паразитами бактерий (рис. 321). Они способны проникать в бактериальную клетку и разрушать ее. Бактериофаг состоит из головки, хвостика и хвостовых отростков, с помощью которых он осаждается на оболочке бактерий. В головке содержится ДНК. Фаг частично растворяет клеточную стенку и мембрану бактерии и за счет сократительной реакции хвостика впрыскивает свою ДНК в ее клетку.

Бактериофаги имеют большое практическое значение и являются важным объектом научных исследований в области молекулярной биологии.

ВИЧ-инфекция (СПИД)

Синдром приобретенного иммунного дефицита — это новое инфекционное заболевание, которое признано как первая действительно глобальная эпидемия в известной истории человечества.

Вирус иммунодефицита человека внедряется в чувствительные клетки. Основные клетки-мишени — CD4-лимфоциты (хелперы), так как на их поверхности есть рецепторы, способные связываться с поверхностным белком ВИЧ. В меньшем числе они содержатся на мембранах макрофагов, еще в меньшем — на мембранах В-лимфоцитов. Кроме того, ВИЧ проникает в ЦНС, поражая нервные клетки и клетки нейроглии, в клетки кишечника. Иммунная система организма человека утрачивает свои защитные свойства и оказывается не в состоянии противостоять возбудителям различных инфекций. Средняя продолжительность жизни инфицированного человека составляет 7-10 лет.

Важные теоретические положения относительно принципов структурной организации вирусов были разработаны Ф. Криком и Д. Уотсом.

Большинство вирусов построено по одному из двух геометрических принципов׃ спирали или изометрические структуры, поэтому они имеют форму, которую в некотором приближении можно рассматривать как палочковидную или сферическую. Наиболее просто устроенные вирусы имеют вирионы палочковидной формы. Вирион вируса табачной мозаики, например, содержит около 95% белка и 5% РНК. У палочковидных вирусов белковые субъединицы, образующие оболочку вириона, уложены в виде спирали.

Детально изучено строение вируса табачной мозаики, частица которого представляет собой спираль, состоящую из 230 витков, с шагом спирали 23А. Спираль сформирована из 2130 идентичных молекул белка, содержащих по 158 аминокислотных остатков. Генетическим материалом вируса табачной мозаики является одноцепочечная РНК. Рентгеноструктурные исследования показали, что молекула РНК глубоко погружена в белок и повторяет шаг белковой спирали. Нуклеотиды РНК контактируют с белковыми субъединицами таким образом, что одна субъединица связана с тремя нуклеотидами. Внутри вирусной частицы проходит полый канал диаметром 40 А. Структура вируса табачной мозаики определяется спецефичностью взаимодействия между белковыми субъединицами.

Описаны вирусы, полностью зависящие от других неродственныхим вирусов. Примером служит вирус-сателлит вируса некроза табака. Вирус-сателлит – дефектный очень мелкий вирус, содержащий в геноме по существующим взглядам только информацию, необходимую для синтеза белка его оболочки. Необходимая для инфекционности вируса-сателлита РНК-полимераза и другие компоненты индуцируются в клетках зараженного растения вирусом некроза табака – полноценной вирусной частицей. Отличие вирусов-сателлитов от ковирусов заключается в том, что вирус-сателлит и вирус некроза табака имеют разные белки оболочки, т.е. принадлежат к неродственным группам вирусов.

Представителем наиболее сложно устроенных вирусов являются вирусы группы оспы. Это самые крупные вирусы (220X220X300 нм) со своеобразным морфологическим строением (имеют форму кирпичиков с закругленными углами). Сердцевина вириона (нуклеоид) представляет собой комплекс ДНК с белком, окруженный белковой оболочкой. С обеих сторон к белковой оболочке примыкают так называемые боковые тела, функция которых пока неизвестна. Эти компоненты окружены несколькими слоями мембран, образующими наружную оболочку вириона. Кроме ДНК и белков в составе вириона осповакцины обнаружено примерно 2% липидов и 2% фосфолипидов.

Сложное строение имеют также Т-четные фаги. Частица Т-четных фагов имеет головку и отросток. Отросток состоит из следующих структурных элементов: чехла, стержня, базальной пластинки и фибрилл отростка. Каждый из структурных элементов может быть построен из нескольких типов белковых молекул. Всего в состав частицы фага Т4 входит свыше 30 различных белков. Идентифицировано около 80 генов фага Т4, которые делятся на две группы. В одну из них (меньшую) относят гены, функция которых связана с репликацией и синтезом структурных белков. Другая (большая) группа генов осуществляет контроль за сборкой субъ-единиц структурных белков и участвует в процессе формирования частицы фага из собственных структурных элементов.

Размеры вирусов варьируются в достаточно широких пределах от 10–20 до 300–350 нм.

Вирионы наиболее просто организованных вирусов состоят из нуклеиновой кислоты и белковой оболочки. Оболочка вируса носит название капсида. Вирионы некоторых более сложноорганизованных вирусов на поверхности белкового капсида имеют дополнительную внешнюю оболочку – суперкапсид.

Капсид.Капсиды вирионов состоят из белковых субъединиц, уложенных строго определенным образом. Существуют лишь два типа капсидов – спиральные и изометрические.

1. Капсид вирусов прежде всего выполняет защитную функцию. Он защищает нуклеиновую кислоту вируса от различных физических и химических воздействий, в первую очередь от воздействия многочисленных нуклеаз.

2. Вторая функция капсида заключается в наличии в его составе рецептора, комплементарного рецептору заражаемой клетки. Капсид определяет хемосорбцию вируса на поверхности клетки хозяина. В процессе эволюции сложилась уникальная избирательность вирусов – поражать строго определенный круг хозяев, а в организме хозяина – определённый тип клеток.

Нуклеиновые кислоты. В отличие от других организмов, вирусы содержат всегда один тип нуклеиновой кислоты (ДНК или РНК). В зависимости от типа нуклеиновой кислоты вирусы подразделяются на ДНК-геномные и РНК-геномные.

В царстве вирусов функцию хранителя генетического кода может выполнять не только ДНК, но и РНК. Нуклеиновые кислоты вирусов отличаются крайним разнообразием. Вирусы содержат как обычные природные формы нуклеиновых кислот – двухцепочечную ДНК и одноцепочечную РНК, так и одноцепочечную ДНК и двухцепочечную РНК (табл. 8).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Вирусы относятся к царству Vira.Это

2.не имеющие клеточного строения, белоксинтезирующей системы,

3.содержащие один тип нуклеиновой кислоты (только ДНК или РНК).

4.Вирусы, являясь облигатными внутриклеточ­ными паразитами, размножаются в цитоплазме или ядре клетки.

5.Они являются автономными генетическими структурами и отличаются осо­бым, разобщенным (дизъюнктивным), спо­собом размножения (репродукции): в клетке отдельно синтезируются нуклеиновые кисло­ты вирусов и их белки, затем происходит их сборка в вирусные частицы.

6.Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью электронной микроскопии, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть различ­ной (рис.):

1.палочковидной (вирус табач­ной мозаики),

2.пулевидной (вирус бешенства),

3.сферической (вирусы полиомиелита, ВИЧ),

4.ни­тевидной (филовирусы),

5.в виде сперматозои­да (многие бактериофаги).

Размеры вирусов определяют:

1. с помощью электронной микроскопии,

2. методом улырафильтрации через фильтры с известным диаметром пор,

3. методом ультрацентрифугирования.

Наиболее мелкими вирусами являются парвовирусы (18 нм) и вирус полиомиелита (около 20 нм), наиболее круп­ным — вирус натуральной оспы (около 350 нм).

Различают ДНК- и РНК-содержащие виру­сы.Они обычно гаплоидны, т. е. имеют один набор генов. Исключением являются ретро-вирусы, имеющие диплоидный геном. Геном вирусов содержит от шести до нескольких со­тен генов и представлен различными видами нуклеиновых кислот:

1.двунитевыми,

2.однонитевыми,

3.линейными,

4.кольцевыми,

5.фрагментированными.

Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов вы­полняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).

Имеются также РНК-содержащие вирусы с отрицательным(минус-нить РНК) гено­мом.Минус-нить РНК этих вирусов выпол­няет только наследственную функцию.

Геном вирусов способен включаться в геном клетки в виде провируса, проявляя себя ге­нетическим паразитом клетки. Нуклеиновые кислоты некоторых вирусов, например, вирусов герпеса, могут находиться в цитоплазме инфи­цированных клеток, напоминая плазмиды.

Различают:

1. просто устроенные вирусы (на­пример, вирусы полиомиелита, гепатита А) и

2. сложно устроенные вирусы (например, виру­сы кори, гриппа, герпеса, коронавирусы).

Упросто устроенных вирусов (рис.) нуклеиновая кислота связана с белковой оболоч­кой, называемой капсидом(от лат. capsa—футляр). Капсид состоит из повторяющихся морфологических субъединиц— капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом и вместе называются нуклеокапсидом.

Таким образом, просто устроенные вирусы состоят из нуклеиновой кислоты и капсида. Сложно устроенные вирусысостоят из нукле­иновой кислоты, капсида и липопротеино­вой оболочки.

Вирионы имеют:

1.спиральный,

2.икосаэдрический (кубический) или сложный тип симметрии кап­сида (нуклеокапсида).

Спиральный тип сим­метрии обусловлен винтообразной структурой нуклеокапсида (например, у вирусов гриппа, коронавирусов). Икосаэдрический типсимметрии обусловлен образованием изометрически полого тела из капсида, содержащего вирусную нуклеи­новую кислоту (например, у вируса герпеса).

Капсид и оболочка (суперкапсид) защи­щают вирионы от воздействия окружающей среды, обусловливают избирательное взаимо­действие (адсорбцию) с определенными клет­ками, а также антигенные и иммуногенные свойства вирионов.

Внутренние структуры вирусов называют сер­дцевиной. У аденовирусов сердцевина состоит из гистоноподобных белков, связанных с ДНК, уреовирусов — из белков внутреннего капсида.

В вирусологии используют следующие так­сономические категории:

1.семейство (название оканчивается на viridae),

2.подсемейство (на­звание оканчивается на virinae),

3.род (название оканчивается на virus).

Однако названия родов и особенно подсемейств даны не для всех ви­русов. Вид вируса не получил биноминального названия, как у бактерий.

В основу классификации вирусов поло­жены следующие категории:

1. тип нуклеино­вой кислоты (ДНК илиРНК), ее структура, количество нитей (одна или две), особен­ности воспроизводства вирусного генома (табл. 2.3),

2. размер и морфология вирионов, количество капсомеров и тип симметрии нуклеокапсида, наличие оболочки (суперкапсида).

3. чувствительность к эфиру и дезоксихолату,

4. место размножения в клетке,

5. антигенные свойства и др.

Вирусы поражают позвоночных и беспозво­ночных животных, а также бактерии и расте­ния. Являясь основными возбудителями ин­фекционных заболеваний человека, они также участвуют в процессах канцерогенеза, могут передаваться различными путями, в том числе через плаценту (вирусы краснухи, цитомегалии и др.), поражая плод человека. Они могут приводить и к постинфекционным осложне­ниям — развитию миокардитов, панкреатитов, иммунодефицитов и др.

Другими необычными агентами, близкими к вирусам, являются вироиды— небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие


Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства. Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию. Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.

В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака. А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия. Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.

Строение вирусов

Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.

Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам. С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.

Формы вирусов

Вирусы встречаются в трех основных формах. Они бывают:

  1. Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
  2. Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
  3. Сложными. Например, бактериофаги.

Проникновение вирусов в клетку-хозяина

Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента. Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки. Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.

Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:

Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.

Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.

Проникновение вирусов в клетку достигается за счет:

Размножение вирусов

После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).


Механизм репликации зависит от вирусного генома.

  • ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
  • РНК-вирусы обычно используют ядро ​​РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.

Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.

Вироиды

Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.

30 известных вироидов были классифицированы в две семьи.

  • Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
  • Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.

В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.

Бактериофаги


Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:

Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.

Существует три основных структурных формы фага:

  1. Икосаэдрическая (20-сторонняя) головка с хвостом
  2. Икосаэдрическая головка без хвоста
  3. Нитевидная форма

Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).

Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.

Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.

Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция. При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда. Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.

При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.

Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.

Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.

Покажите ножницы которыми вирусы разрезают молекулу РНК что бы встроиться для мутации.Может что нибудь придумаете другое.К примеру деление цепочка аминокислот получив энергию из вне как одноименные заряды распадается на две. К каждой соединятся только те какие были ранее (другие проскочат мимо),казалось бы копии,но внутренняя энергия разная(уменьшается увеличивается) поэтому распад и создание. Вся химия углерода на этом построена 1000 орган соединений создает у других хим элементов этого свойства нет. Иммунная система делает накладку(интерференция)с помощью энергии интерферонов пытаясь разрушить цепочку РНК вируса.Надо помочь организму но не вакциной(вирус быстро мутирует)

Все представители царства Vira имеют разнообразную форму и размеры, которые колеблются в диапазоне от 20нм (у самых маленьких пикорнавирусов до) до 400нм (крупных поксвирусов). Они могут иметь сферическую, многогранную, палочковидную, пулевидную, нитевидную, булавовидную формы.

Различают просто устроенные (простые, безоболочечные вирусы) и сложно устроенные (оболочечные вирусы). У тех и у других в центре находится молекула нуклеиновой кислоты (РНК или ДНК), окруженная белковой оболочкой капсидом. Вся такая структура называется нуклеокапсид.

Защитная белковая оболочка-капсид состоит из множества однородных белков субъединиц. Такое строение капсида имеет большой биологический смысл, так как при такой укладке расходуется сравнительно мало генетической информации, что очень важно для вирусов, обладающих маленькими размерами генома . Нуклеокапсиды вирусов построены по спиральному или кубическому и смешанному типу симметрии в зависимости от расположения белковых субъединиц.

Спиральный тип укладки капсомеров наиболее надежно защищает нуклеиновую кислоту вируса, а кубический тип – рыхлая укладка: у таких вирусов быстро происходит депротеинизация (разрушение оболочки) в фагосоме клетки.

Химический состав вириона. Основные компоненты вирусов нуклеиновая кислота и белки. Простые вирусы состоят только из них. В состав сложных вирусов дополнительно входят липиды и углеводы.

В зависимости от типа НК вирусы подразделяются на ДНК-геномные и РНКгеномные . Для вирусных НК в отличие от клеточных характерно большое разнообразие строения и форм, различиющееся у разных вирусов.

ВИРУСНЫЕ НК.

Вирусные ДНК обычно бывают двунитевыми, реже однонитевыми. Двунитевые ДНК бывают: линейными с замкнутыми концами, линейные с незамкнутыми концами, циркулярно-замкнутые (кольцевидные), циркулярнозамкнутые с одной неполной нитью ДНК.

На концах ДНК имеются прямые или инвертированные (повернутые на 180 градусов) повторы. Они представлены теми же нуклеотидами, которые располагаются в начальном участке ДНК. Нуклеотидные повторы являются своеобразным маркерами, позволяющими отличить вирусную ДНК от клеточной. Функциональное значение этих повторов состоит в способности замыкаться в кольцо. В этой форме она реплицируется, транскрибируется, может встраиваться в клеточный геном.

Вирусные РНК чаще однонитевые, но имеются и двунитевые РНК с фрагментированным геномом. РНК бывают: цельные линейные, фрагментированные линейные, кольцевые сигментированные.

Различают РНК с + геномом (плюс РНК) и отрицательным геномом минус РНК. Плюс РНК одновременно выполняет функции генома и информационной РНК (и-РНК), которая служит матрицей для синтеза дочерних геномов. Минус РНК свойственна только геномная функция, т.е. она служит матрицей для синтеза как геномной, так и и- РНК.

Вирусные РНК состоят из нескольких фрагментов (например, РНК вируса гриппа) или представлены нефрагментированной молекулой ( РНК парамиксовирусов).

У двунитевых как ДНК, так и РНК содержащих вирусов информация обычно записана в одной цепи. Однако, существуют вирусы, у которых информация может быть частично закодирована и во второй цепи. Таким образом, достигается экономия генетического материала.

ФУНКЦИИ НК

1. хранитель генетической информации (независимо от типа НК);

2. функция и РНК у РНК + нитей.

Вирусные белки подразделяются на структурные ( VP ) и неструктурные ( NS ). Структурные белки входят в состав вириона это:

- капсидные белки – формирующие капсид;

- внутренние белки - геномные белки и ферменты (белки полимеразного комплекса участвующие в процессе репликации;

- матриксные белки сложных вирусов, образующие М – слой и участвующие в заключительных этапах самосборки вирионов и в их стабилизации;

- суперкапсидные поверхностные белки – гликопротеины, ответственные за прикрепление вирионов к клеточным рецепторам и их проникновение в клетку.

Неструктурные белки синтезируются в инфицированной клетке для обеспечения процесса репродукции и в состав вирионов не входят, это : - вирусиндуцированные ферменты, обслуживающие транскрипцию и трансляцию вирусного генома; - регуляторные белки;

- нестабильные белки – предшественники, из которых формируются структурные белки вириона; Ферменты вирусов.

В отличие от прокариот и клеток всех других организмов, вирусы лишены ферментов, участвующих в многочисленных метаболических реакциях. Однако многие вирусы содержит в составе капсидов одну или две группы ферментов. К первой группе относятся ферменты репликации и транскрипции, ко второй ферменты, участвующие в проникновение вирусной НК в клетку хозяина и выходе образовавшихся вирионов из клнтки. Ферменты вирусов подразделяются на две группы:

- вирионные – ферменты транскрипции и репликации (ДНК и РНК- полимеразы), имеющиеся почти у всех вирусов, а также обратная транскриптаза ретровирусов. У некоторых вирусов к вирионным относятся еще эндо – и экзонуклеазы, АТФ-азы, нейраминидазы.

- вирусиндуцированные – относятся те ферменты, структура которых закодирована в вирусном геноме, но продуцирующихся соответствующими структурами зараженной клетки.

Функции вирусных белков:

- защитная;

- рецепторная (адресная и якорная у белков суперкапсидной оболочки, а если ее нет, капсидной);

- антигенная;

- ферментативная.

Примеры:

1.ДНК-зависимая ДНК-полимераза - осуществляет синтез ДНК на матрице ДНК.

2.ДНК-зависимая РНК-полимераза - осуществляет синтез мРНК на матрице ДНК.

3.РНК зависимая РНК-полимераза – осуществляет синтез РНК на матрице РНК. Выполняет функции транскриптазы и репликазы.

4.Обратная транскриптаза или ревертаза или РНК зависимая ДНК полимераза осуществляет синтез ДНК на матрице РНК.

5.Хеликаза - осуществляет расплетение двухнитевой структуры ДНК.

6.Протеиназы - ферменты, участвующие в посттрансляционном процессе. Медленные инфекции

Различают две группы медленных инфекций, отличающихся по этиологии.

1.группа – возбудители обычные (канонические) вирусы (вирус кори, краснухи, цитомегаловирус и т.д.).

2 группа – возбудители инфекционные белки, называемые прионами.

1.Медленные вирусные инфекции, вызываемые обычными вирусами могут развиваться после перенесенных вирусных инфекций, таких как корь, краснуха, клещевой энцефалит, цитомегаловирусная инфекция, ВИЧ-инфекция. Развитию этой группы инфекций способствует длительное персистирование вирусов в организме, особенно в клетках нейроглии. Например, через несколько лет после перенесенной кори у детей и подростков может развиваться подострый склерозирующий панэнцефалит.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.