Почему вирусы не фотосинтезируют

Некоторые организмы способны захватывать энергию солнечного света и использовать ее для производства органических соединений. Этот процесс, известный как фотосинтез, необходим для поддержания жизни, поскольку обеспечивает энергию как для производителей, так и для потребителей. Фотосинтезирующие организмы, также известные как фотоавтотрофы, являются организмами, способными к процессу фотосинтеза, и включают высшие растения, некоторые протисты (водоросли и эвглена), а также бактерии.

При фотосинтезе световая энергия преобразуется в химическую энергию, которая хранится в виде глюкозы (сахара). Неорганические соединения (диоксид углерода, вода и солнечный свет) используются для производства глюкозы, кислорода и воды. Фотосинтезирующие организмы используют углерод для получения органических молекул (углеводов, липидов и белков), которые необходимы для построения биологической массы.

Кислород, образующийся в виде побочного продукта фотосинтеза, используется многими организмами, включая растения и животных, для клеточного дыхания. Большинство организмов полагаются на фотосинтез, прямо или косвенно, для получения питательных веществ. Гетеротрофные организмы, такие как животные, большинство бактерий и грибов, не способны к фотосинтезу или продуцированию биологических соединений из неорганических источников. Таким образом, они должны потреблять фотосинтетические организмы и другие автотрофы для получения питательных веществ.

Первые фотосинтезирующие организмы

Мы очень мало знаем о самых ранних источниках и организмах фотосинтеза. Были многочисленные предложения относительно того, где и как возник этот процесс, но нет прямых доказательств для подтверждения любого из возможных происхождений. Имеются внушительные доказательства того, что первые фотосинтезирующие организмы появились на Земле примерно от 3,2 до 3,5 млрд лет назад в виде строматолитов, слоистых структур, подобных формам, которые образуют некоторые современные цианобактерии. Существует также изотопное доказательство автотрофной фиксации углерода около 3,7-3,8 миллиарда лет назад, хотя нет ничего, что указывало бы на то, что эти организмы были фотосинтезирующими. Все эти утверждения о раннем фотосинтезе весьма противоречивы и вызвали множество споров в научном сообществе.

Хотя считается, что жизнь впервые появилась на Земле около 3,5 миллиардов лет назад, вероятно, ранние организмы не метаболизировали кислород. Вместо этого они полагались на минералы, растворенные в горячей воде вокруг вулканических жерл. Возможно, что цианобактерии начали производить кислород в качестве побочного продукта фотосинтеза. По мере роста концентрации кислорода в атмосфере, он начал отравлять многие другие формы ранней жизни. Это привело к эволюции новых организмов, которые могли использовать кислород в процессе, известном как дыхание.

Современные фотосинтезирующие организмы

К основным организмам, которые перерабатывают энергию солнца в органические соединения относятся:

  • Растения;
  • Водоросли (диатомовые водоросли, фитопланктон, зеленые водоросли);
  • Эвглена;
  • Бактерии - цианобактерии и аноксигенные фотосинтетические бактерии.

Фотосинтез растений происходит в специализированных органеллах растительных клеток, называемых хлоропластами. Хлоропласты встречаются в листьях растений и содержат пигмент хлорофилл. Этот зеленый пигмент поглощает световую энергию, необходимую для процесса фотосинтеза. Хлоропласты содержат внутреннюю мембранную систему, состоящую из структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию. Двуокись углерода превращается в углеводы в процессе, известном как фиксация углерода или цикл Кальвина. Углеводы могут хранится в виде крахмала, используемого во время дыхания или для производства целлюлозы. Кислород, который образуется в процессе, выделяется в атмосферу через поры в листьях растений, называемые устьицами.

Растения играют важную роль в цикле питательных веществ, в частности, углерода и кислорода. Водные и наземные растения (цветущие растения, мхи и папоротники) помогают регулировать углерод в атмосфере, удаляя углекислый газ из воздуха. Растения также важны для производства кислорода, который выделяется в воздух как ценный побочный продукт фотосинтеза.

Водоросли представляют собой эукариотические организмы, которые имеют характеристики как растений, так и животных. Как и животные, водоросли способны питаться органическим материалом в окружающей их среде. Некоторые водоросли также содержат органеллы и структуры, обнаруженные в клетках животных, такие как жгутики и центриоли. Как и растения, водоросли содержат фотосинтетические органеллы, называемые хлоропластами. Хлоропласты содержат хлорофилл - зеленый пигмент, который поглощает световую энергию для фотосинтеза. Водоросли также имеют другие фотосинтетические пигменты, такие как каротиноиды и фикобилины.

Водоросли могут быть одноклеточными или существовать в виде больших многоклеточных организмов. Они живут в различных местах обитания, включая соленые и пресные водные среды, влажную почву или породы. Фотосинтезирующие водоросли, известные как фитопланктон, встречаются как в морской, так и в пресноводной среде. Морской фитопланктон состоит из диатомей и динофлагеллятов. Пресноводный фитопланктон включает зеленые водоросли и цианобактерии. Фитопланктон плавает вблизи поверхности воды, чтобы получить лучший доступ к солнечному свету, который необходим для фотосинтеза. Фотосинтетические водоросли жизненно важны для глобального цикла веществ, таких как углерод и кислород. Они поглощают углекислый газ из атмосферы и генерируют более половины кислорода на планетарном уровне.

Эвглена - одноклеточные протисты, которые были классифицированы по типу эвгленовые (Euglenophyta) с водорослями из-за своей способности к фотосинтезу. В настоящее время, ученые считают, что они не являются водорослями, а приобрели свои фотосинтетические способности через эндосимбиотические отношения с зелеными водорослями. Таким образом, эвглена была помещена в типологию эвгленозои (Euglenozoa).

Цианобактерии - это кислородные фотосинтетические бактерии. Они собирают солнечную энергию, поглощают углекислый газ и выделяют кислород. Как растения и водоросли, цианобактерии содержат хлорофилл и превращают углекислый газ в глюкозу через фиксацию углерода. В отличие от эукариотических растений и водорослей, цианобактерии являются прокариотическими организмами. Им не хватает окруженного мембраной ядра, хлоропластов и других органелл, обнаруженных в клетках растений и водорослей. Вместо этого цианобактерии имеют двойную наружную клеточную мембрану и сложенные внутренние тилакоидные мембраны, которые используются при фотосинтезе. Цианобактерии также способны к фиксации азота, процесс превращения атмосферного азота в аммиак, нитрит и нитрат. Эти вещества абсорбируются растениями для синтеза биологических соединений.

Цианобактерии встречаются в различных наземных биомах и водных средах. Некоторые из них считаются экстремофилами, потому что обитают в чрезвычайно суровых условиях, например горячие источники и гиперсоленные водоемы. Цианобактерии также существуют как фитопланктон и могут жить в других организмах, таких как грибы (лишайники), простейшие и растения. Они содержат пигменты фикоэритрин и фикоцианин, которые отвечают за их сине-зеленый цвет. Эти бактерии иногда ошибочно называют сине-зелеными водорослями, хотя они вообще к ним не принадлежат.

Аноксигенные фотосинтетические бактерии представляют собой фотоавтотрофы (синтезируют пищу с использованием солнечного света), которые не продуцируют кислород. В отличие от цианобактерий, растений и водорослей, эти бактерии не используют воду в качестве донора электронов в транспортной цепи электрона при производстве АТФ. Вместо этого они используют водород, сероводород или серу в качестве основных доноров электронов. Аноксигенные бактерии также отличаются от цианобактерий тем, что у них нет хлорофилла для поглощения света. Они содержат бактериохлорофилл, который способен поглощать более короткие волны света, чем хлорофилл. Таким образом, бактерии с бактериохлорофиллом, как правило, обнаруживаются в глубоких водных зонах, куда могут проникать более короткие длины волн света.

Примеры аноксигенных фотосинтетических бактерий включают пурпурные и зеленые бактерии. Пурпурные бактериальные клетки бывают разных форм (сферические, стержневые, спиральные), и они могут быть подвижными или не подвижными. Пурпурные серные бактерии обычно встречаются в водных средах и серных источниках, где присутствует сероводород и отсутствует кислород. Пурпурные несерные бактерии используют более низкие концентрации сульфида, чем пурпурные серные бактерии. Зеленые бактериальные клетки обычно имеют сферическую или стержнеобразную форму, и в основном не подвижны. Зеленые серные бактерии используют сульфид или серу для фотосинтеза и не могут жить при наличии кислорода. Они процветают в богатых сульфидами водных средах и иногда образуют зеленоватый или коричневый окрас в своих местах обитания.

Что такое фотосинтез?

Фотосинтез – биохимический процесс, во время которого с помощью особых пигментов растений и энергии света из неорганических веществ (углекислого газа, воды) возникают органические. Это один из наиболее важных процессов, за счет которого появилось и продолжает существовать большинство организмов на планете.

Значение фотосинтеза для жизни на Земле

Без фотосинтеза вместо множества живых организмов на нашей планете существовали бы одни лишь бактерии. Именно энергия, полученная в результате данного химического процесса, позволила бактериям эволюционировать.

Любые природные процессы нуждаются в энергии. Она поступает от Солнца. Но правильную форму солнечный свет приобретает лишь после того, как преобразовывается растениями.

Растения используют лишь часть энергии, а остальную накапливают в себе. Ими питаются травоядные животные, которые являются пищей для хищников. В ходе образовавшейся цепочки каждое звено получает необходимые ценные вещества и энергию.

Кислород, вырабатываемый в ходе реакции, необходим для дыхания всем существам. Дыхание представляет процесс, противоположный фотосинтезу. При этом органические вещества окисляются, разрушаются. Полученная энергия используется организмами для выполнения различных жизненно необходимых задач.

В период существования планеты, когда растений было мало, кислород практически отсутствовал. Примитивные формы жизни получали минимум энергии другими способами. Ее было слишком мало для развития. Поэтому дыхание за счет кислорода открыло более широкие возможности.

Еще одна функция фотосинтеза – защита организмов от воздействия ультрафиолетового света. Речь идет об озоновом слое, находящемся в зоне стратосферы на высоте около 20-25 км. Образуется он за счет кислорода, который превращается в озон под действием солнечного света. Без этой защиты жизнь на Земле ограничивалась бы только подводными организмами.

Организмы выделяют во время дыхания углекислый газ. Он является обязательным элементом фотосинтеза. В противном случае углекислый газ просто накапливался бы в верхних слоях атмосферы, значительно усиливая парниковый эффект.

Это серьезная экологическая проблема, суть которой состоит в повышении температуры атмосферы с негативными последствиями. К ним относится изменение климата (глобальное потепление), таяние ледников, повышение уровня Мирового океана и др.

  • выделение кислорода;
  • образование энергии;
  • образование питательных веществ;
  • создание озонового слоя.

Определение и формула фотосинтеза

Углекислый газ + вода + свет = углевод + кислород.

Научная формула фотосинтеза:

Фотосинтез происходит так, что непосредственный контакт воды и СО2 не наблюдается.

Значение фотосинтеза для растений

Растениям для роста и развития требуются органические вещества, энергия. Благодаря фотосинтезу они обеспечивают себя данными компонентами. Создание органических веществ – основная цель фотосинтеза для растений, а выделение кислорода считается побочной реакцией.

Как происходит фотосинтез?

Фотосинтез протекает непосредственно в зеленых частях растений – хлоропластах. Они входят в состав растительных клеток. Хлоропласты содержат вещество – хлорофилл. Это и есть тот основной фотосинтетический пигмент, благодаря нему происходит вся реакция. Кроме того, хлорофилл определяет зеленый цвет растительности.

Вода поступает через корневую систему растения, а газ проникает непосредственно в листья. Свет выступает в качестве источника энергии. Когда частица света действует на молекулу хлорофилла, происходит ее активация. В молекуле воды H2O кислород (O) остается невостребованным. Таким образом, он становится побочным для растений, но таким важным для нас, продуктом реакции.

Фазы фотосинтеза

Фотосинтез делится на две стадии: световую и темновую. Протекают они одновременно, но в разных частях хлоропласта. Название каждой фазы говорит само за себя. Световая или светозависимая фаза происходит только при участии частиц света. Темновой или светонезависимой фазе наличие света не требуется.

Прежде чем рассматривать каждую фазу подробнее, стоит разобраться в строении хлоропласта, поскольку оно определяет суть и место протекания стадий. Хлоропласт является разновидностью пластид и внутри клетки расположен отдельно от остальных ее компонентов. Он имеет форму зернышка.

Составляющие части хлоропласта, участвующие в фотосинтезе:

  • 2 мембраны;
  • строма (внутренняя жидкость);
  • тилакоиды;
  • люмены (просветы внутри тилакоидов).

Протекает на тилакоидах, точнее, их мембранах. Когда на них попадает свет, выделяются и накапливаются негативно заряженные электроны. Таким образом, фотосинтетические пигменты лишаются всех электронов, после чего наступает очередь распада молекул воды:

При этом образованные протоны водорода имеют положительный заряд и копятся на внутренней мембране тилакоида. В итоге протоны с зарядом плюс и электроны с зарядом минус разделены лишь мембраной.

Происходит выработка кислорода, как побочного продукта:

В определенный момент фазы электронов и протонов водорода становится слишком много. Тогда в работу вступает фермент – АТФ-синтаза. Его задача состоит в том, чтобы переместить протоны водорода из мембраны тилакоида в жидкую среду хлоропласта – строму.

На этом этапе водород попадает в распоряжение другого переносчика – НАДФ (сокращение от никотинамиддинуклеотидфосфат). Это также разновидность фермента, который ускоряет окислительные реакции в клетках. В данном случае его работа состоит в транспортировке протонов водорода в реакции углеводов.

На данной стадии происходит процесс фотофосфолирования, во время него вырабатывается огромное количество энергии. Ее источником является АТФ – аденозинтрифосфорная кислота.

  1. Попадание кванта света на хлорофилл.
  2. Выделение электронов.
  3. Выделение кислорода.
  4. Образование НАДФН-оксидазы.
  5. Образование энергии АТФ.

Светонезависимая фаза происходит непосредственно в строме. Она представляет собой ряд ферментативных реакций. Углекислый газ, поглощенный на световой стадии, растворился в воде, а на этом этапе он восстанавливается до глюкозы. Также вырабатываются сложные органические вещества.

Реакции темновой фазы делятся на три основных типа и зависят от вида растений (точнее, их метаболизма), в клетках которых происходит фотосинтез:

К С3-растениям относится большая часть культур сельскохозяйственного назначения, которые растут в умеренном климате. В ходе фотосинтеза у них углекислый газ становится фосфоглицериновой кислотой.

К С 4 -растениям принадлежат субтропические и тропические виды, преимущественно сорняки. Для них характерна трансформация углекислого газа в оксалоацетат. САМ-растения – категория растений, которым не хватает влаги. Они отличаются особенным видом фотосинтеза – CАМ.

Наиболее распространенным является С3-фотосинтез, который также именуется циклом Кальвина – в честь американского ученого Мелвина Кальвина, который внес огромный вклад в изучение данных реакций и получил за это Нобелевскую премию.

Растения называются С3 из-за того, что во время реакций темновой фазы образуются 3-углеродные молекулы 3-фосфоглицериновой кислоты – 3-PGA. Непосредственное участие принимают различные ферменты.

Чтобы образовалась полноценная молекула глюкозы, должно пройти 6 циклов реакций светонезависимой фазы. Углевод – главный продукт фотосинтеза в цикле Кальвина, но помимо него вырабатываются жирные и аминокислоты, а также гликолипиды. У С3 растений фотосинтез проходит исключительно в клетках мезофилла.

Растения, относящиеся к группе С3, характеризуются одним существенным недостатком. Если в окружающей среде отмечается недостаточный уровень влаги, способность к фотосинтезу существенно снижается. Это происходит по причине фотодыхания.

Дело в том, что при невысокой концентрации углекислого газа в хлоропластах (меньше 50:1 000 000) вместо фиксации углерода происходит фиксация кислорода. Специальные ферменты существенно замедляются и расходуют солнечную энергию впустую.

Одновременно с этим замедляется рост и развитие растения, поскольку оно недополучает органические вещества. Также не происходит выброс кислорода в атмосферу.

В отличие от C3-синтеза, здесь реакции фиксации углекислого газа осуществляются в различных клетках растений. Эти виды растений способны справляться с проблемой фотодыхания, и делают они это при помощи двухэтапного цикла.

С одной стороны поддерживается высокий показатель углекислого газа, а с другой – контролируется низкий уровень кислорода в хлоропластах. Подобная тактика позволяет растениям С 4 избежать фотодыхания и связанных с ним сложностей. Представителями растений данной группы являются сахарный тростник, кукуруза, просо и др.

По сравнению с растениями С3 они способны намного интенсивнее выполнять процессы фотосинтеза при условии высокой температуры и недостатка влаги. На первом этапе углекислый газ фиксируется в клетках мезофилла, где образуется 4-углеродная кислота. Затем кислота переходит в оболочку и распадается там на 3-углеродное соединение и углекислый газ.

На втором этапе полученный углекислый газ начинает работать в цикле Кальвина, где вырабатывается глицеральдегид-3-фосфат и углеводы, необходимые для энергетического обмена.

Благодаря двухэтапному фотосинтезу в растениях С 4 образуется достаточное для цикла Кельвина количество углекислого газа. Поэтому ферменты работают в полную силу и не растрачивают энергию напрасно.

Но у и этой системы есть свои минусы. В частности расходуется больший объем энергии АТФ – она необходима для трансформации 4-углеродных кислот в 3-углеродные и в обратном направлении. Таким образом, С3-фотосинтез всегда продуктивнее, чем С 4 при должном количестве воды и света.

Что влияет на скорость фотосинтеза?

Фотосинтез может протекать с различной скоростью. Этот процесс зависит от условий окружающей среды:

Вода является основополагающим фактором, поэтому при ее недостатке реакции замедляются. Для фотосинтеза наиболее благоприятны волны красного и сине-фиолетового спектра. Также предпочтительнее высокая степень освещенности, но лишь до определенного значения – при его достижении связь между освещенностью и скоростью реакции исчезает.

Высокая концентрация углекислого газа обеспечивает быстрые фотосинтетические процессы и наоборот. Определенная температура важна для ферментов, которые ускоряют реакции. Идеальные условия для них – около 25-30℃.

Фотодыхание

Дышать необходимо всем живым существам, и растения не являются исключением. Однако этот процесс у них происходит немного иначе, чем у людей и животных, отчего носит название фотодыхания.

В целом, дыхание – физический процесс, во время которого живой организм и окружающая его среда обмениваются газами. Как и всему живому, растениям для дыхания нужен кислород. Но потребляют они его гораздо меньше, чем вырабатывают.

В ходе фотосинтеза, который происходит только при солнечном свете, растения создают для себя пищу. Во время фотодыхания, которое осуществляется круглосуточно, эти питательные вещества ими поглощаются с целью поддержки метаболизма внутри клеток.

Кислород (как и углекислый газ) проникает в клетки растений через особые отверстия – устьица. Они располагаются в нижней части листочков. На одном листе может располагаться около 1000 устьиц.

Газообмен растений в зависимости от освещенности

Процесс газообмена при разной освещенности представлен следующим образом:

Хемосинтез

Некоторые живые организмы тоже способны к образованию моноуглеводов из воды и углекислого газа, при этом они не нуждаются в солнечном свете. К ним относятся бактерии, а процесс преобразования энергии называется хемосинтезом.

Хемосинтез являет собой процесс, во время которого синтезируется глюкоза, но вместо солнечной энергии используются химические вещества. Протекает он в зонах с достаточно высокой температурой, подходящей для работы ферментов, и отсутствием света. Это могут быть области вблизи гидротермальных источников, утечек метана на морских глубинах и др.

Источником энергии для бактерий выступают химические связи метана и сероводорода. В результате хемосинтеза возникает сера и ее соединения в качестве побочных продуктов реакции.

История открытия фотосинтеза

История открытия и изучения фотосинтеза берет начало в 1600 г., когда Ян Батист ван Гельмонт решил разобраться в актуальном на тот момент вопросе: чем питаются растения и откуда они черпают полезные вещества?

В то время считалось, что источником ценных элементов является почва. Ученый поместил в емкость с землей веточку ивы, но предварительно измерил их вес. На протяжении 5 лет он ухаживал за деревом, поливая его, после чего снова провел измерительные процедуры.

Выяснилось, что вес земли снизился на 56 г, однако деревце стало в 30 раз тяжелее. Это открытие опровергло мнение о том, что растения питаются почвой и породило новую теорию – водного питания.

В дальнейшем многие ученые пытались ее опровергнуть. Например, Ломоносов считал, что частично структурные компоненты попадают к растениям через листья. Он руководствовался растениями, которые успешно растут на засушливых территориях. Однако доказать эту версию не удалось.

Ближе всего к реальному положению вещей оказался Джозеф Пристли – ученый-химик и священник по совместительству. Однажды он обнаружил погибшую мышь в перевернутой вверх дном банке, и этот случай заставил его провести в 1770-х годах ряд опытов с грызунами, свечами и емкостями.

Пристли обнаружил, что свеча всегда быстро тухнет, если накрыть ее сверху банкой. Также не может выжить и живой организм. Ученый пришел к выводу, что существуют некие силы, которые делают воздух пригодным для жизни, и попытался связать это явление с растениями.

Он продолжил ставить опыты, но в этот раз попробовал поместить под стеклянную емкость горшочек с растущей мятой. К огромному удивлению, растение продолжало активно развиваться. Тогда Пристли поместил под одну банку растение и мышь, а под вторую – только животное. Результат очевиден – под первой емкостью грызун остался невредим.

Достижение химика стало мотивацией для других ученых всего мира повторить эксперимент. Но загвоздка была в том, что священник проводил опыты в дневное время. А, к примеру, аптекарь Карл Шееле – ночью, когда появлялось свободное время. В итоге, ученый обвинил Пристли в обмане, ведь его подопытные не переносили эксперимент с растением.

Между химиками разразилось настоящее научное противостояние, которое принесло существенную пользу и дало возможность сделать еще одно открытие – чтобы растения восстанавливали воздух, им нужен солнечный свет.

Конечно, фотосинтезом это явление тогда еще никто не называл, да и оставалось немало вопросов. Однако в 1782 ботаник Жан Сенебье смог доказать, что при наличии солнечного света растения способны расщеплять углекислый газ на клеточном уровне. А в 1864, наконец, появилось экспериментальное доказательство того, что растения поглощают углекислый газ и выделяют кислород. Это заслуга ученого из Германии – Юлиуса Сакса.

Фотосинтез – интересное видео

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.


Фотосинтез – это синтез сложных молекул из более простых под действием фотонов света, в результате которого световая энергия трансформируется в химическую. Продуктами первой фазы фотосинтеза являются НАДФ и АТФ (аденозинтрифосфат) — универсальные источники энергии для всех биохимических реакций, протекающих в живых организмах. Во второй фазе НАДФ и АТФ участвуют в синтезе более стабильных органических молекул, позволяющих хранить энергию (крахмал и ряд других углеводов).

Не только растения, но и многие одноклеточные способны к фотосинтезу благодаря специальным органоидам, которые называются хлоропластами. Хлоропласты состоят из двух мембран и стопок (граны), которые содержат диски (тилакоиды). Внутреннее вещество, находящиеся между гранами и мембраной, называется стромой. Фотосинтез делят на две фазы: световую и темновую. Рассмотрим каждую из них.

Световая фаза

Световая фаза происходит на мембранах тилакоидов, которые содержат хлорофилл. Фотоны света действуют на хлорофилл, возбуждают его и приводят к выделению электронов на мембрану (это первая фотосистема). Когда хлорофилл теряет все свои электроны, фотоны света действуют на воду, вызывая фотолиз воды (это вторая фотосистема). В результате фотолиза протоны водорода накапливаются на внутренней мембране тилакоидов, а из гидроксильных ионов получается кислород. Также важно то, что работа второй фотосистемы восполняет утраченные электроны первой фотосистемы.

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик, называемый АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму где их подхватывает НАДФ, который вместе с полученным водородом переходит дальше в темновую фазу. Прохождение протонов водорода через АТФ-синтазу сопровождается фосфорилированием, другими словами — синтезом АТФ из АДФ и фосфата.

Стоит отметить, что обе фотосистемы реагируют на световые волны различной длины. Цель их работы – запастись энергией для синтеза сложных органических молекул из простых неорганических, а именно, запастись АТФ и НАДФ·H2, которые активно используются в темновой фазе.

Темновая фаза

Темная стадия фотосинтеза – сложный процесс, в котором НАДФ·H2 и АТФ используются для производства молекул углеводов (сахаров). В отличие от световой фазы, ее процессы могут происходить как на свету, так и в темноте. Разберемся, как темновая фаза фотосинтеза работает, какие у нее преимущества и почему она важна.

Темная фаза фотосинтеза происходит внутри органелл хлоропластов и ​​напрямую зависит от продуктов, полученных в световой фазе. Рибулозобисфосфат, присоединяясь к газообразному углекислому газу (CO2) из воздуха, приводит к образованию органических соединений, главным образом углеводов или сахаров, молекулы которых содержат углерод, водород и кислород. Этот цикл трансформации называется циклом Кальвина.

Выделяют три стадии темновой фазы:

  1. Углеродная фиксация.
  2. Восстановление.
  3. Регенерация.

После образования глюкозы происходит последовательность химических реакций, которая приводит к образованию крахмала и ряда других углеводов. С помощью этих продуктов растение производит липиды (жиры) и белки, необходимые для формирования растительной ткани. Полученный крахмал смешивается с водой, содержащейся в листьях, через крошечные трубки в стебле растения транспортируется к корням, где формируются его основные запасы. Также крахмал используется для производства целлюлозы, основного компонента древесины.

Стоит отметить, что темновая фаза является донором НАДФ + и АДФ + Ф для световой фазы.

С3-фотосинтез

Растения, использующие для фиксации углекислого газа из воздуха лишь цикл Кальвина, известны как растения C3. На первом этапе цикла CO2 реагирует с RuBP с образованием двух 3-углеродных молекул 3-фосфоглицериновой кислоты (3-PGA). Отсюда и происходит обозначение C3 для растений, использующих этот цикл.

Весь процесс, от захвата световой энергии до производства сахара, происходит внутри хлоропласта. Световая энергия улавливается нециклическим процессом транспорта электронов, который использует тилакоидные мембраны.

Около 85% видов растений являются растениями С3. Приведем примеры:

  • Пшеница
  • Рис
  • Ячмень
  • Овес
  • Рожь
  • Арахис
  • Хлопок
  • Сахарная свекла
  • Табак
  • Шпинат
  • Большинство деревьев
  • Газонные травы (овсяница и др.)

У растений C3 есть недостаток: в сухих условиях их фотосинтетическая эффективность страдает из-за процесса, называемого фотодыханием. Когда концентрация CO2 в хлоропластах падает ниже уровня 50 частей на миллион, катализатор РуБисКО, который помогает фиксировать углерод, начинает вместо этого фиксировать кислород. Это очень бесполезно расходует энергию, полученную от света, и заставляет РуБисКО работать всего на четверть своей максимальной скорости. В результате резко угнетается синтез органических веществ, рост и развитие растения, а побочный продукт фотосинтеза (кислород) не выбрасывается в атмосферу.

Фотодыхание

Во время дыхания растения потребляют питательные вещества для поддержания метаболизма растительных клеток, в то время как во время фотосинтеза растения создают свою собственную пищу.

Формула фотосинтеза:

    Световая энергия + углекислый газ + вода ➜ кислород + глюкоза

6CO2 + 6H2O = C6H12O6 + 6O2

Формула дыхания растений:

    Кислород + глюкоза ➜ диоксид углерода + вода + тепловая энергия

C6H12O6 + 6O2 = 6CO2 + 6H2O + 674 ккал

Растения дышат постоянно, днем ​​и ночью. А фотосинтез происходит только в течение дня, когда есть солнечный свет.

Дыхание – это физический процесс обмена газами между живыми объектами и окружающей средой.

Растения не дышат в самом строгом смысле этого слова, как животные и люди. Во время дыхания и фотосинтеза газы диффузно входят и выходят из растений через маленькие отверстия, называемые устьицами. Устьица расположены на нижней стороне листа. Каждый лист может содержать тысячи таких отверстий.

Все живые организмы дышат, потому что им нужно получать кислород для осуществления клеточного дыхания, чтобы остаться в живых. Так же и растения должны дышать, чтобы остаться в живых.

Однако, в общем и целом у растений объем выброса кислорода намного превышает объем его поглощения при фотодыхании. За солнечный день один гектар леса выделяет 180-200 кг кислорода, поглощая 120-280 кг углекислого газа.

Газообмен растений в зависимости от освещенности

В зависимости от количества солнечного света растения могут выделять или поглощать кислород и углекислый газ следующим образом.

Темно – имеет место только дыхание. Кислород расходуется, а углекислый газ выделяется.

Яркий солнечный свет – при фотосинтезе используется углекислый газ, и кислорода освобождается намного больше, чем расходуется на дыхание. Лишний кислород выделяется в атмосферу. В дневное время фотосинтез производит кислород и глюкозу быстрее, чем дыхание потребляет его. Фотосинтез также использует углекислый газ быстрее, чем его производит дыхание. Избыток кислорода выделяется в атмосферу, углекислый газ забирается из воздуха, а неиспользованная глюкоза связывается в крахмал, который откладывается в растении для хранения и последующего использования.

С4-фотосинтез

Проблема фотодыхания преодолевается в растениях C4 с помощью двухэтапной стратегии, которая поддерживает высокий уровень CO2 и низкий уровень O2 в хлоропластах, где работает цикл Кальвина. Эта стратегия служит для предотвращения фотодыхания.

Сахарный тростник является лидером в сфере фотосинтеза в нормальных условиях произрастания и является ярким примером растения, использующего фотосинтез C4.

Растения С4 почти никогда не насыщаются светом, а в жарких и сухих условиях значительно превосходят растения С3 по скорости синтеза органических веществ. Они используют двухстадийный процесс, в котором СО2 фиксируется в тонкостенных клетках мезофилла с образованием 4-углеродного промежуточного соединения, обычно малата (яблочной кислоты). 4-углеродная кислота активно перекачивается через клеточную мембрану в толстостенную оболочку, где она расщепляется на CO2 и 3-углеродное соединение.

Этот CO2 затем вступает в цикл Кальвина и вырабатывает G3P, а затем углеводы, которые попадают в клеточную систему обмена энергии.

Преимущество этого двухстадийного процесса состоит в том, что активная закачка углерода в ячейку оболочки пучка и блокирование кислорода создают окружающую среду с 10-120-кратным количеством СО2, доступным для цикла Кальвина, и рубиско оптимально используется, не переходя на связывание кислорода. Высокая концентрация CO2 и отсутствие кислорода означает, что система никогда не испытывает негативных эффектов фотодыхания.

Недостатком фотосинтеза С4 является расход дополнительной энергии АТФ, которая идет на превращение 4-углеродных кислот в 3-углеродные соединения, и обратно. Эта потеря энергии объясняет, почему растения C3 всегда будут превосходить растения C4 по производительности, если им будет достаточно воды и солнца.

Небольшой процент растений С4 включает в себя многие тропические травы и осоки, а также важные продовольственные культуры:

Значение фотосинтеза в природе

Растения жизненно важны для существования человека и других животных. Без фотосинтеза у нас не было бы ни кислорода, ни пищи, чтобы элементарно оставаться в живых.

Жизнь на нашей планете поддерживается в основном благодаря фотосинтезу водорослями и наземными растениями. Это связано с их способностью синтезировать органическое вещество из неорганических веществ почвы, воды и атмосферного углекислого газа, с использованием солнечного света.

Также можем рассматривать растения (наземные и водные) как глобальную фабрику кислорода, который они выбрасывают в виде отходов фотосинтеза, когда производят для себя сахар и прочие углеводы, используя воду с углекислым газом в качестве сырья, а свет – источника энергии.

Хемосинтез

Фотосинтез происходит на суше и на мелководье, где доступен солнечный свет. Но образование моноуглеводов из углекислого газа и воды возможно и без солнечной энергии. И такую возможность используют бактерии.

Хемосинтез – это процесс, при котором пища (глюкоза) производится с использованием химических веществ (вместо солнечного света) в качестве источника энергии. Хемосинтез происходит вокруг гидротермальных источников и метановых утечек в глубоком море, и других теплых местах, где отсутствует солнечный свет.

Во время хемосинтеза бактерии, живущие на морском дне или внутри животных, используют энергию, запасенную в химических связях сероводорода и метана, для получения глюкозы из воды и углекислого газа (растворенного в морской воде). Как побочные продукты хемосинтеза образуются сера и соединения серы.

Оба процесса, фотосинтез и хемосинтез, сводятся к образованию молекул глюкозы и других простых углеводов из СО2 и Н2О. Но у этих процессов разные источники энергии и побочные продукты (отходы). И это определяет значение растений и бактерий в природе.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.