Почему у вирусов разная геометрическая форма

2 3) доказать, что рост численности вирусов и бактерий подчиняется законам геометрической прогрессии. 1. ВИРУСЫ И БАКТЕРИИ 1.1.Строение и геометрическое расположение вирусов и бактерий в пространстве Бактерии - это мельчайшие организмы, обладающие клеточным строением. Диаметр бактериальной клетки в среднем составляет 1 мкм. Размеры клеток варьируют в переделах от 0,1 до 10 мкм. Поэтому их можно рассмотреть только под микроскопом. Отсюда и называние - микробы или микроорганизмы. Бактерии освоили самые разнообразные среды обитания: они живут в почве, пыли, воде, воздухе, на внешних покровах животных и растений и внутри организма. Их можно обнаружить даже в горячих источниках, где они живут при температуре около 60 о С или выше. Численность бактерий трудно определить: в 1 г плодородной почвы может находиться до 100 млн., а в 1 см 3 парного молока млн. бактерий. Жизнедеятельность микроорганизмов имеет важное значение для всех остальных живых существ, т.к. бактерии и грибы разрушают органическое вещество и участвуют в круговороте веществ в природе. К тому же бактерии приобретают все большее значение в жизни людей, и не потому, что они вызывают различные заболевания, а потому, что их можно использовать для получения многих необходимых продуктов. Строение типичной бактериальной клетки показано на рисунке1. Рисунок 1. Обобщенная схема строения клетки бактерии. Многие бактерии подвижны, и эта подвижность обусловлена наличием у них одного или нескольких жгутиков. Жгутики состоят из одинаковых сферических субъединиц белка флагеллина (похожего на мышечный актин), которые расположены по спирали и образуют полый цилиндр диаметром около нм. Несмотря на волнистую форму жгутиков, они довольно жестки. Жгутики приводятся в движение посредством уникального механизма. Основание жгутика, по-видимому, вращается так, что жгутик как бы ввинчивается в среду, не совершая

3 беспорядочных биений, и таким образом продвигает клетку вперед. Это, очевидно, единственная известная в природе структура, где используется принцип колеса. Жгутики легче всего рассмотреть в электронном микроскопе, применив технику напыления металлом. Существуют четыре основных типа клеток: кокки (сферические), спириллы ( спиралевидные), бациллы (палочковидные), вибрионы ( короткие палочки, всегда изогнутые в виде запятой) (см. рисунок 2). Рисунок 2. Четыре основных типа клеток Вирусы - это мельчайшие живые организмы, размеры которых варьируют в пределах примерно от 20 до 300 нм; в среднем они раз в пятьдесят меньше бактерий. Вирусы нельзя увидеть с помощью светового микроскопа (так как их размеры меньше полудлины световой волны), и они проходят через фильтры, которые задерживают бактериальные клетки. Вирусы могут воспроизводить себя только внутри живой клетки, поэтому они являются облигатными паразитами. Обычно они вызывают явные признаки заболевания.

4 Попав внутрь клетки-хозяина, они "выключают" (инактивируют) хозяйскую ДНК и, используя свою собственную ДНК или РНК, дают клетке команду синтезировать новые копии вируса (см. ниже). Вирусы передаются из клетки в клетку в виде инертных частиц. Вирусы устроены очень просто. Они состоят из фрагмента генетического материала, либо ДНК, либо РНК, составляющей сердцевину вируса, и окружающей эту сердцевину защитной белковой оболочкой, которую называют капсидом. Полностью сформированная инфекционная частица называется вирионом. У некоторых вирусов, таких как вирусы герпеса или гриппа, есть еще и дополнительная липопротеидная оболочка, которая возникает из плазматической мембраны клетки-хозяина. В отличие от всех остальных организмов вирусы не имеют клеточного строения. Оболочка вирусов часто бывает построена из идентичных повторяющихся субъединиц - капсомеров. Из капсомеров образуются структуры с высокой степенью симметрии, способные кристаллизоваться. Это позволяет получить информацию об их строении как с помощью кристаллографических методов основанных на применении рентгеновских лучей, так и с помощью электронной микроскопии. Как только в клеткехозяине появляются субъединицы вируса, они сразу же проявляют способность к самосборке в целый вирус. На рисунке ниже представлена упрощенная схема, которая показывает общее строение вирусов: Рисунок 3. Схематический разрез вируса, имеющего капсомерное строение. Нуклеокапсид вирусов Комплекс капсида и вирусного генома называют нуклеокапсидом. Он повторяет симметрию капсида, то есть обладает спиральной либо кубической симметрией соответственно. У подобных вирусов нуклеиновая кислота окружена капсомерами, образующими фигуру икосаэдра. К вирусам с подобной структурой относят аденовирусы, реовирусы, иридови-русы, герпесвирусы и пикорнавирусы. Организация по принципу кубической симметрии придаёт вирусам сферическую форму. Принцип кубической симметрии - самый экономичный для формирования замкнутого капсида, так как для его организации используются сравнительно небольшие белковые блоки, образующие большое внутреннее пространство, в которое свободно укладывается нуклеиновая кислота. Икосаэдры и додекаэдры (например, у аденовирусов, вируса полиомы/папилломы, вируса полиомиелита). У икосаэдра имеется 20 треугольных граней, 12 вершин и 30 ребер. Правильный икосаэдр показан на рисунке ниже (А). Как видно из рисунка ниже (В), у аденовируса каждая из 20 граней состоит из нескольких капсомеров.

5 Рисунок 4. А.Геометрическая модель икосаэдра. В.Рисунок, сделанный с трехмерной модели аденовируса. В сумме число капсомеров составляет 252 (240 шестиугольных и 12 пятиугольных по вершинам икосаэдра). У разных вирусов это число варьирует. Так, например, у бактериофага φх174 оно равно 12, у вируса герпеса - 162, у вируса полиомы У всех этих вирусов по 12 пятиугольных капсомеров, при этом у бактериофага шестиугольных капсомеров нет вообще, и образуется структура, которая называется додекаэдром. СПИРАЛЬНАЯ СИММЕТРИЯ. В нуклеокапсиде взаимодействие нуклеиновой кислоты и белка осуществляется по одной оси вращения. Каждый вирус со спиральной симметрией обладает характерной длиной, шириной и периодичностью нуклеокапсида. Нуклеокапсиды большинства патогенных для человека вирусов имеют спиральную симметрию (например, коронавирусы, рабдовирусы, пара- и ортомиксовирусы, буньявирусы и ареновирусы). К этой группе относят и вирус табачной мозаики. Организация по принципу спиральной симметрии придаёт вирусам палочковидную форму. При спиральной симметрии белковый чехол лучше защищает наследственную информацию, но требует большого количества белка, так как покрытие состоит из сравнительно крупных блоков. Лучшей иллюстрацией спиральной симметрии может служить вирус табачной мозаики (ВТМ), содержащей РНК (см. рисунок ниже). Рисунок 5. Строение палочковидного вируса табачной мозаики (на рисунке изображена часть этого вируса). В основу рисунка положены данные по дифракции рентгеновских лучей и результаты биохимических и электронно-микроскопических исследований.

9 Если, то - убывающая Если, то - постоянна Последовательность является арифметической прогрессией тогда и только тогда, когда любой ее член, начиная со второго, является средним арифметическим предшествующего и последующего членов, то есть. Формула n-го члена арифметической прогрессии: Формулы суммы n первых членов арифметической прогрессии: Определение геометрической прогрессии. Последовательность, первый член которой отличен от нуля и каждый член, начиная со второго, равен предыдущему, умноженному на одно и то же отличное от нуля число q, называется геометрической прогрессией. Число q - знаменатель прогрессии. Таким образом, геометрическая прогрессия есть последовательность, заданная рекуррентно равенством, где. Отношение любого члена геометрической прогрессии и ему предшествующего члена, равно одному и тому же числу q: Если, то - монотонна Если, то - постоянна Последовательность является геометрической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, есть среднее геометрическое соседних с ним членов, то есть. Формула n-ого члена геометрической прогрессии:, где Формулы суммы n членов геометрической прогрессии: Сумма бесконечной геометрической прогрессии при равна 3. ИССЛЕДОВАНИЕ ЧИСЛЕННОСТИ ВИРУСОВ И БАКТЕРИЙ В первой главе мы подробно рассмотрели строение некоторых видов бактерий и вирусов. Остановимся более подробно на тех, которые по моему мнению и повлияли на распространение болезней в моём классе.


Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства. Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию. Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.

В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака. А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия. Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.

Строение вирусов

Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.

Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам. С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц. В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.

Формы вирусов

Вирусы встречаются в трех основных формах. Они бывают:

  1. Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
  2. Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
  3. Сложными. Например, бактериофаги.

Проникновение вирусов в клетку-хозяина

Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента. Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки. Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.

Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:

Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.

Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.

Проникновение вирусов в клетку достигается за счет:

Размножение вирусов

После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).


Механизм репликации зависит от вирусного генома.

  • ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
  • РНК-вирусы обычно используют ядро ​​РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.

Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.

Вироиды

Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.

30 известных вироидов были классифицированы в две семьи.

  • Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
  • Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.

В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.

Бактериофаги


Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:

Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.

Существует три основных структурных формы фага:

  1. Икосаэдрическая (20-сторонняя) головка с хвостом
  2. Икосаэдрическая головка без хвоста
  3. Нитевидная форма

Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).

Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.

Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.

Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция. При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда. Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.

При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.

Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.

Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.

Покажите ножницы которыми вирусы разрезают молекулу РНК что бы встроиться для мутации.Может что нибудь придумаете другое.К примеру деление цепочка аминокислот получив энергию из вне как одноименные заряды распадается на две. К каждой соединятся только те какие были ранее (другие проскочат мимо),казалось бы копии,но внутренняя энергия разная(уменьшается увеличивается) поэтому распад и создание. Вся химия углерода на этом построена 1000 орган соединений создает у других хим элементов этого свойства нет. Иммунная система делает накладку(интерференция)с помощью энергии интерферонов пытаясь разрушить цепочку РНК вируса.Надо помочь организму но не вакциной(вирус быстро мутирует)

Вирусы и бактерии играют важную роль в жизни людей, являясь в основном возбудителями различных заболеваний. Для осенне-весеннего периода характерен рост инфекционных заболеваний, вызванных данными мельчайшими формами жизнь.

Изучить видовое многообразие форм вирусов и бактерий, сравнить их формы и пространственное расположение с геометрическими фигурами, исследовать процесс размножения вирусов и бактерий с математической точки зрения.

Изучить геометрические формы и пространственное расположение отдельных представителей вирусов и бактерий.

Изучить рост численности и размеры выбранных микроорганизмов.

Доказать, что рост численности вирусов и бактерий подчиняется законам математике.

Вирусы и бактерии.

Геометрические формы и пространственное расположение вирусов и бактерий, скорость их размножения.

Вирусы можно представить в виде идеальных геометрических тел, а бактерии – в виде поверхностей вращения. Скорость размножения вирусов и бактерий в идеальных условиях можно описать, используя математические законы.

Актуальность исследования обусловлена тем, что людей окружает множество различных микроорганизмов, большую часть из которых составляют вирусы и бактерии. Многие из них опасны для человека. Эти микроскопические организмы могут вызывать заболевания, как у людей, так и у животных, растений, грибов, причём каждый из них имеет своего собственного специфического хозяина. Лишь часть микроорганизмов полезны для организма человека, например, молочнокислые бактерии, азотофиксирующие бактерии, бактериофаги (вирусы, избирательно поражающие бактериальные клетки).

Скорость размножения этих примитивных форм жизни чрезвычайно велика и зависит не только от условий, в который попали эти микроорганизмы, но и от их строения и пространственного расположения.

Поэтому, для борьбы с опасными вирусами и бактериями необходимо иметь представления об их строении, форме, пространственном расположении, особенностях и скорости размножения.

Первыми организмами, появившимися на Земле несколько миллиардов лет назад и создавшими предпосылки для дальнейшего развития жизни, были бактерии. Сейчас они составляют отдельное царство живых организмов. Вирусы – самые мелкие из известных живых существ. Бактерии являются самостоятельными живыми организмами, вирусы же, не имеющие собственного обмена веществ, заимствуют свою жизнь у клеток растений, животных и бактерий. Они являются внутриклеточными паразитами живых организмов и не способны размножаться вне клетки. Вне клетки вирусные частицы ведут себя как химические вещества.

Вирусы – простейшая форма жизни

Вирус (от латинского virus – яд) – простейшая форма жизни, микроскопическая частица, представляющая собой молекулы нуклеиновых кислот (ДНК или РНК), заключенные в белковую оболочку (капсид) и способные инфицировать живые организмы. Некоторые вирусы, такие как мимивирусы, имеют оба типа молекул. В среднем, вирусы в 5 раз меньше бактерий. Размеры и формы вирусов разнообразны. Большинство изученных вирусов имеют диаметр в пределах от 20 до 300 нм. Некоторые филовирусы имеют длину до 1400 нм, но их диаметр составляет лишь 80 нм. В 2013 году самым крупным из известных вирусов считался Pandoravirus размерами 1 × 0,5 мкм, однако в 2014 году из многолетней мерзлоты из Сибири был описан Pithovirus, достигающий 1,5 мкм в длину и 0,5 мкм в диаметре. В настоящий момент он считается крупнейшим из известных вирусов. Большинство вирионов невозможно увидеть в световой микроскоп, поэтому используют электронные – как сканирующие, так и просвечивающие.

Зрелая вирусная частица, состоит из нуклеиновой кислоты, покрытой защитной белковой оболочкой – капсидом. Капсомер – структурная белковая субъединица капсида. Капсид состоит из белков, а его форма лежит в основе классификации вирусов по морфологическому признаку.

Типы капсидов вирусов

Классифицируют четыре морфологических типа капсидов вирусов: икосаэдрический, спиральный, продолговатый и комплексный.

Икоса́эдр – правильный выпуклый многогранник, двадцатигранник , одно из Платоновых тел. Каждая из 20 граней представляет собой равносторонний треугольник. Число ребер равно 30, число вершин – 12. Икосаэдр имеет 59 звёздчатых форм (рис. 1).

Рисунок 1. Геометрическая модель икосаэдра.

Большинство вирусов животных имеют икосаэдрическую или почти шарообразную форму с икосаэдрической симметрией. Правильный икосаэдр является оптимальной формой для закрытого капсида, сложенного из одинаковых субъединиц. Минимальное необходимое число одинаковых капсомеров – 12, каждый капсомер состоит из пяти идентичных субъединиц. Многие вирусы, такие как ротавирус (вирус кишечного гриппа), имеют более двенадцати капсомеров и выглядят круглыми, но сохраняют икосаэдрическую симметрию.

Вирион аденовирусов имеет форму правильного икосаэдра (диаметр 80-100 нм) со скругленными рёбрами. В каждой вершине имеется выступающая белковая структура, необходимая для связывания с клеточными рецепторами заражаемых клеток. Внутри частицы упакован геном вируса, представленный линейной двуцепочечной ДНК, длина которой варьируется, но в среднем составляет 35000 пар нуклеотидов. Капсид состоит из двух видов капсомеров – гексонов (240 гексонов) с шестью рядом располагающимися частицами и 12 пентонов на вершине икосаэдра, соединяющиеся с пятью соседними частицами (рис. 3)

Рисунок 2. Схема строения аденовируса.

Вирус папилломы человека представляет собой кольцевую двухцепочечную молекулу ДНК протяженностью около 8000 пар нуклеотидов, покрытую белковым капсидом. Капсид имеет форму икосаэдра и сформирован 72 пентамерами протеина L1, с которыми ассоциирован протеин L 2 (рис. 3)

Рисунок 3. Вирус папилломы человека.

Вирус краснухи имеет сферическую форму, диаметром 50-70 нм. Это сложный РНК-геномный вирус. РНК заключена в капсид икосаэдрической симметрии, состоящей из С белка. Нуклеокапсид окружен оболочкой – липидным бислоем – суперкапсидом (рис. 4).

Рисунок 4. Строение вируса краснухи.

Вирус кори – сложно организованный вирус, его диаметр составляет от 150 до 350 нм (рис. 5), это наиболее крупный РНК-содержащий вирус человека и животных. Белковый капсид вируса устроен по икосаэдрическому типу симметрии и содержит геном, представленный одной линейной отрицательной нитью рибонуклеиновой кислоты (РНК) – 1Н(–)РНК.

Рисунок 5. Схема строения вируса кори.

Вирус полиомиелита полиовирус является представителем мелких фильтрующихся вирусов. Его размер составляет от 15 до 30 нм, масса – 8-9 МД. Полиовирусы имеют сферическую форм, икосаэдрический тип симметрии. Внутри располагается однонитчатая плюс-РНК и протеин VPg. Генетический материал вируса защищен снаружи капсидом. РНК составляет 20-30% очищенного вируса, состоит из 7,5-8 тысяч нуклеотидов. Молекулярная масса РНК составляет 2,5 МД. Капсид состоит из 12-и пентамеров (пятиугольников). Каждый из пентамеров состоит из 5 протомеров – белковых субъединиц. Внешняя оболочка отсутствует (рис. 6).

Рисунок 6. Вирус полиомиелита.

Спиральные капсиды устроены несколько проще. Капсомеры, составляющие капсид, покрывают спиральную нуклеиновую кислоту и формируют тоже достаточно стабильную белковую оболочку этих вирусов. И при использовании высокоразрешающих электронных микроскопов и соответствующих методов приготовления препарата можно видеть спирализованные структуры на вирусах. При спиральной симметрии капсида вирусная нуклеиновая кислота образует спиральную (или винтообразную) фигуру, полую внутри, и субъединицы белка (капсомеры) укладываются вокруг нее тоже по спирали (трубчатый капсид) (рис. 7). Примером вируса со спиральной симметрией капсида является вирус табачной мозаики, который имеет палочковидную форму, а его длина составляет 300 нм с диаметром 15 нм. В состав вирусной частицы входит одна молекула РНК размером около 6000 нуклеотидов. Капсид состоит из 2000 идентичных субъединиц белка, уложенных по спирали.

Рисунок 7. Строение вируса табачной мозаики.

Рисунок 8. Бактериофаг.

Продолговатыми назыают икосаэдрические капсиды, вытянутые вдоль оси симметрии пятого порядка. Такая форма характерна для головок бактериофагов (рис. 8).

Рисунок 9. Строение бактериофага Т4.

К омплексный капсид, организованный по принципу двойной симметрии. Некоторые бактериофаги имеют двойную симметрию: головка организована по принципу кубической симметрии, отросток - по принципу спиральной симметрии. Форма этих капсидов ни чисто спиральная, ни чисто икосаэдрическая. Они могут нести дополнительные наружные структуры, такие как белковые хвосты или сложные наружные стенки. Некоторые бактериофаги, такие как фаг Т4, имеют комплексный капсид, состоящий из икосаэдрической головки, соединённой со спиральным хвостом, который может иметь шестигранное основание с отходящими от него хвостовыми белковыми нитями. Этот хвост действует наподобие молекулярного шприца, прикрепляясь к клетке-хозяину и после впрыскивая в неё генетический материал вируса (рис. 9).

Вирусы по своей форме напоминают идеальные геометрические тела – многогранники, сферу.

Рисунок 10. Бактериальная клетка.

Б актерии – обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) занимает в клетке вполне определенное место - зону, называемую нуклеоидом (рис. 10).

По форме клеток бактерии можно разделить на несколько групп: палочковидные бациллы, сферические кокки, спиральные спириллы, вибрионы(короткие палочки, всегда изогнутые в виде запятой) (рис. 11).

Рисунок 11. Форма бактерий.

Кокковидные бактерии обычно имеют форму правильного шара, диаметром 1,0-1,5 мкм; некоторые бобовидную, ланцетовидную, эллипсовидную форму. По характеру взаиморасположения образующихся после деления клеток кокки подразделяют на следующие группы:

Микрококки (от лат. мicros – малый). Клетки делятся в одной плоскости и чаще всего сразу же отделяются от материнской. Располагаются по одиночке, беспорядочно. Сапрофиты, патогенных для человека нет (рис. 12).

Рисунок 12. Микрококки.

Рисунок 13. Диплококки.

Д иплококки (от лат. diplos – двойной). Деление происходит в одной плоскости с образованием пар клеток, имеющих либо бобовидную, либо ланцетовидную форму. Например, возбудитель гонореи Neisseria gonorrhoeae, возбудитель пневмонии Streptococcus pneumoniae (рис. 13).

Рисунок 14. Стрептококки.

С трептококки (от лат. streptos – цепочка). Деление клеток происходит в одной плоскости, но размножающиеся клетки сохраняют между собой связь и образуют различной длины цепочки, напоминающие нити бус. Многие стрептококки являются патогенными для человека и вызывают различные заболевания: скарлатину, ангину, гнойные воспаления и другие. Например, Streptococcus pyogenes (рис. 14).

Стафилококки (от лат. staphyle – гроздь винограда). Клетки делятся в нескольких плоскостях, а образующиеся клетки располагаются скоплениями, напоминающими гроздья винограда. Стафилококки вызывают более 100 различных заболеваний человека. Они наиболее частые возбудители гнойных воспалений. Например, Staphylococcus aureus (рис. 15).

Рисунок 15. Золотистый стафилококк.

Рисунок 16. Тетракокки.

Т етракокки (от лат. tetra – четыре). Деление происходит в двух взаимно перпендикулярных плоскостях с образованием тетрад. Патогенные для человека виды встречаются очень редко (рис. 16).

Рисунок 17. Сарцины.

С арцины (от лат. sarcina – связка, тюк). Деление происходит в трех взаимно перпендикулярных плоскостях с образованием пакетов (тюков) из 8, 16, 32 и большего числа особей. Особенно часто встречаются в воздухе (рис. 17).

Рисунок 18. Палочковидные бактерии.

Цилиндрическая, или палочковидная форма характерна для большинства бактерий (греч. bacteria – палочка; лат. bacillum – палочка). Палочковидные бактерии подразделяются на образующие эндоспоры и не образующие эндоспоры. Палочковидные бактерии различаются по длине, поперечному диаметру, форме концов клеток, расположению (рис. 18).

Эти формы различаются количеством и характером завитков, длиной и толщиной клеток. Они подразделяются на вибрионы (лат. vibrare – колебание, дрожание), которые имеют вид изогнутой палочки или запятой (рис. 19); спириллы(лат. spiro – изгиб) – это спирально изогнутые клетки, имеющие большой поперечный диаметр и малое число высоких завитков (рис. 20); спирохеты (лат. spiro – изгиб, греч. сhaite – хохол, грива) (рис. 21) – это изгибающиеся тонкие спирально изогнутые клетки, напоминающие по форме синусоиду (рис. 22).

Рисунок 19. Вибрионы

Рисунок 20. Спириллы.

Рисунок 21. Бледная трепонема.

Рисунок 22. Синусоида.

Рост численности вирусов и бактерий

Рисунок 23. Репродукция вируса.

Размножение вирусов протекает с исключительно высокой скоростью: так при попадании в верхние дыхательные пути одной вирусной частицы вируса гриппа уже через 8 часов количество инфекционного потомства достигает 10³, а концу первых суток – 10²³. Высочайшая скорость размножения вируса гриппа объясняет столь короткий инкубационный период 1-2 суток. Быстроте репродукции вируса благоприятствует распространение многих сотен вирионов, подготовленных лишь одной зараженной клеткой.

Цикл репродукции аденовируса продолжается 14 и более часов. В одной клетке образуется до 1000 вирусных частиц, при этом клетка разрушается. В свою очередь новые вирусные частицы, попав в новые клетки, становятся способными к созданию других вирионов и т.д. Таким образом только один вирион через двое суток после попадания в клетку человека способен дать потомство около 1 млрд. вирионов. То есть размножение вируса подчиняется формуле n-ого члена геометрической прогрессии, где, где q = 1000.

Геометрическая прогрессия – последовательность чисел ( членов прогрессии ) b 1, b 2, b 3,…, в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q ( знаменатель прогрессии ), где b 1 ≠ 0, q ≠ 0, b 2= b 1 q , b 3= b 2 q ,…, b n = b n -1 q

Бактерии в благоприятных условиях растут очень быстро. Как простейшие одноклеточные организмы, бактерии размножаются делением. Достигая своих максимальных габаритов, клетка начинает процесс деления. Спустя определённое время, одна бактерия разделившись по середине, оставляет одну свою полноценную и самостоятельную копию. В благоприятной среде процесс деления протекает особенно динамично. Попадая в благоприятные для развития условия, бактерия делится, образуя две дочерние клетки; у некоторых бактерий деления повторяются через каждые 20 минут и возникают все новые и новые поколения бактерий. Произведём некоторые расчёты, составим числовую последовательность из получившегося числа бактерий: 1, 2, 4, 8, 16, 32, 64… . Заметим, что данная последовательность образует геометрическую прогрессию со знаменателем, равным 2. Отметим, что через час четвёртый член последовательности будет равен 8, через 2 часа – седьмой член последовательности будет равен 64 и т.д. Через 6 часов 19-ый член такой прогрессии будет равен 262144 и т.д. (рис. 24).

Рисунок 24. Размножение бактерий делением надвое.

Бактерии и вирусы представляют собой геометрические тела, поверхности которых используются с наибольшей выгодой для проникновения в клетки человека: бактерии- сферические, спиралевидные, палочковидные клетки, снабжённые несколькими жгутиками, что позволяет быстро передвигаться; вирусы – принимают форму додекаэдра и икосаэдра, которые представляют собой лучшее приближение к сфере.

Размножение вирусов и бактерий подчиняется законам геометрической прогрессии, что тобусловливает высокую скорость распространения инфекционных заболеваний.

Голубев Д.Б. Размышления и споры о вирусах [Текст] / Д.Б. Голубев, В.З. Солоухин – М.: Молодая гвардия, 1989. – 226с.

Лысак В.В. Микробиология [Текст] / В.В. Лысак. – Минск.: БГУ, 2007. – 426 с.; ISBN 985-485-709-3.

Орлова О.Г. Morbillivirus – вирус кори. Общая характеристика и диагностика инфекции [Текст] / О.Г. Орлова, О.В. Рыбальченко, Е.М. Ермоленко. – СПб.: СпецЛит, 2014. – 32с; ISBN: 978-5-299-00620-9

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.