Макрофаги при вирусных инфекциях

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Шаронов A.C., Шаронова И.А.

These researches show a considerable increase in lysozyme secretion while the viruses were acting on peritoneal macrophages of rats. The effect is applied under carrying out of authors' method of vesicular stomatitis virus detection. The scientists note toxic action of high doses of lysozyme on peritoneal cells as well. They have studied the mechanism that determines heightened lysozyme secretion owing to instability of lysosomal macrophages' membrane within viruses' action.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Шаронов A.C., Шаронова И.А.

MACROPHAGES AND THEIR SECRETORY FUNCTION UNDER VIRAL INFECTIONS

These researches show a considerable increase in lysozyme secretion while the viruses were acting on peritoneal macrophages of rats. The effect is applied under carrying out of authors' method of vesicular stomatitis virus detection. The scientists note toxic action of high doses of lysozyme on peritoneal cells as well. They have studied the mechanism that determines heightened lysozyme secretion owing to instability of lysosomal macrophages' membrane within viruses' action.

УДК: 612.112 +612.128+576.311.344]:616.988 А.С. Шаронов, И.А. Шаронова

МАКРОФАГИ И ИХ СЕКРЕТОРНАЯ ФУНКЦИЯ ПРИ ВИРУСНЫХ ИНФЕКЦИЯХ

Владивостокский государственный медицинский университет

Ключевые слова: макрофаги, лизосомы, ферменты.

Считается, что в то время как микрофаги осуществляют важную защитную функцию при бактериальных инфекциях, макрофаги играют существенную защитную роль при вирусных инфекциях [2, 4]. Оказывая действие прямо, опосредованно через интер-лейкины или в совокупностисти с другими иммуно-компетентными клетками, макрофаги определяют течение инфекционного процесса и его исход.

В данной работе представлены литературные данные и некоторые результаты собственных исследований, раскрывающие важность макрофагального звена защиты на примере респираторных вирусных инфекций.

Для многих вирусов макрофаги оказались чувствительными клетками, в которых они активно размножаются. Причем было отмечено, что чувствительность макроорганизма обычно коррелирует с чувствительностью к этим вирусам макрофагов. Интересен в этом отношении путь проникновения вирусов в эти клетки. В связи с тем, что вирусы чрезвычайно малы, фагоцитоз их затруднен. Поэтому они, как правило, поступают в клетку путем пиноцитоза или виропек-сиса. Однако этот путь дает возможность проникнуть в макрофаг небольшому количеству вирусов, что, вероятно, достаточно для инфицирования их как чувствительных клеток и малозначимо для очищения от вирусов внутренней среды организма, в частности крови. Как показано исследованиями А.А. Смородин-цева и др. [4], более массивное поступление вирусов в макрофаги происходит путем их фагоцитоза в адсорбированном состоянии на поверхности эритроцитов, тромбоцитов и в зараженных клетках. Таким образом, макрофаги изолируют большое количество возбудителей, очищая организм. Однако вирусы, проникшие в фагоцит, как правило, не разушаются ли-зосомными ферментами. И если не наблюдается их репродукции при условии устойчивости к ним макрофагов, а это имеет место в отношений макрофагов человека, обладающих резистентностью к вирусам гриппа, то во всяком случае здесь фагоцитоз носит незавершенный характер. В частности, нами было выявлено нарушение процесса интернализации эритроцитов голубя в перитониальных макрофагах крыс под воздействием вируса везикулярного стоматита (рис. 1). Тем не менее находящиеся в макрофагах вирусы постепенно инактивируются благодаря температурному воздействию организма.

Помимо внутриклеточной инактивации, свое противовирусное действие макрофаги могут осуществлять и при помощи факторов, секретируемых ими. По классификации E. Unanue et al. [11] эти факторы разделены на 3 группы. В 1-ю были отнесены вещества, взаимодействующие с внеклеточными белками: ли-зосомные ферменты, активатор плазминогона, элас-таза, коллагеназа. Во 2-ю группу вошли факторы, определяющие резистентность макроорганизма: ли-зоцим, комплемент, интерфероны, в 3-ю — регуляторы активности окружающих клеток (белки, стимулирующие лимфоциты), низкомолекулярные ингибиторы лимфоцитов, факторы, стимулирующие колоние-образование.

Еще больше групп секретируемых макрофагами факторов выделил C. Nathan [10]. Им выделено 12 групп таких факторов: среди них лизосомные ферменты, факторы резистентности и монокины — медиаторы иммунитета макрофагального происхождения.

Классификация секретируемых макрофагами факторов, основанная на механизме их действия, разработана И.С. Фрейдлин [5]. Она выделила две большие группы: А. Продукты, оказывающие преимущественно регулирующее действие (широкого, узкого спектра и специализированные), Б. Продукты с преимущественной эффекторной активностью (антибактериальные, антивирусные, антиклеточные) .

Таким образом, среди секретируемых макрофагами веществ противовирусным действием обладают интерфероны, эндогенный пироген, комплемент. Другие монокины также определяют уровень резистентности при вирусных инфекциях. При этом вирусы являются инициаторами выделения как интерферона, так и эндогенного пирогена, что важно для противовирусной защиты.

Однако практически важна и другая сторона секреторной активности фагоцитов, модулируемая вирусами, — неблагоприятное воздействие на клеточные системы макроорганизма. В частности, небезразлична повышенная выработка ферментов. Так, на собственном материале отмечено значительное увеличение секреции лизоцима при воздействии вирусов на перитонеальные макрофаги крыс, что позволило использовать этот

Рис. 1. Фагоцитоз макрофагами эритроцитов голубя, обработанных вирусами везикулярного стоматита, х900.

феномен в способе определения вируса везикулярного стоматита [6].

При работе с кровью больных гриппом и другими острыми респираторными вирусными инфекциями (ОРВИ) — совместная работа с кафедрой инфекционных болезней ВГМУ — выявлено повышение концентрации сывороточного лизоцима в острый период заболевания. Как известно, лизоцим способен ингиби-ровать хемотаксический ответ нейтрофилов и снижать окислительный обмен в этих защитных клетках. Кроме того, в серии работ Э.Г. Щербаковой и др. [7, 8] показано действие лизоцима на метаболизм макрофагов и их противоинфекционную резистентность.

Помимо лизоцима, усиливается секреция и других ферментов макрофагов: нейтральных протеиназ и кислых гидролаз, которые в высоких концентрациях также могут неблагоприятно воздействовать на системы организма.

Одним из механизмов, определяющих выход клеточных факторов, в том числе ферментов, является стабильность прикрепления их к мембранам [1, 3]. В этой связи нами было проверено состояние показателя стабильности лизосомных мембран (ПСЛМ) прилипающих мононуклеаров крови больных гриппом и ОРВИ: 57 и 71 человек соответственно (табл. 1). ПСЛМ в контроле — 60 здоровых лиц — составил 52±2,5%.

Как видно, по отношению к здоровым людям ПСЛМ у больных ОРВИ повышен, а у больных гриппом понижен. То есть при ОРВИ лизосомы моноцитов несколько лабилизированы, а при гриппе — стабилизированы. Это состояние можно объяснить тем,

Состояние стабильности лизосомных мембран у больных гриппом и ОРВИ в динамике

1-2 день 5-6 день 8-10 день

Грипп ОРВИ 39±3,2* 59±2,1* 38±2,9* 50±2,7 48±2,5 49±2,3

* Различие достоверно по сравнению с контролем (p Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Панин Л.Е., Маянская Н.Н. Лизосомы: роль в адаптации и восстановлении. - Новосибирск: Наука, 1987.

2. Пигаревский В.Е. Зернистые лейкоциты и их свойства. - М.: Медицина, 1978.

3. ПокровскийА.А., ТутельянВ.А.Лизосомы. - М.:Наука, 1976.

4. Смородинцев А.А., Лузянина Т.Я., Смородинцев А.А. Основы противовирусного иммунитета. - М.: Медицина, 1975.

5. Фрейдлин И.С. Система мононуклеарных фагоцитов. - М.: Медицина, 1984.

6. Шаронов А.С. Способ определения вируса везикулярного стоматита/ Описание изобретения к А.С. № 1129231. - 1984. - Бюл. № 46.

7. Щербакова Э.Г., Соболева Э.Л., Растунова Г.А.//Антибиотики. - 1983. -№ 1. - С. 36-40.

8. Щербакова Э.Г., Круглова И.С., Растунова Г.А.// Антибиотики. - 1984. -№ 5. - С. 338-344.

9. Gordon S, Todd J., Cohn Z.// J. Exp. Med. - 1974. -Vol. 139, No. 5. - P. 1228-1248.

10. Nathan C.F., Murray H., Cohn Z.// New England J. Med. - 1980. - Vol. 303, No. 11. - P. 421-424.

11. Unanue E.R.// American J. Pathol. - 1976. - Vol. 83, No. 2. - P. 396-417.

Поступила в редакцию 30.01.03.

MACROPHAGES AND THEIR SECRETORY FUNCTION UNDER VIRAL INFECTIONS A.S. Sharonov, I.A. Sharonova Vladivostok State Medical University

Summary — These researches show a considerable increase in lysozyme secretion while the viruses were acting on peritoneal macrophages of rats. The effect is applied under carrying out of authors' method of vesicular stomatitis virus detection. The scientists note toxic action of high doses of lysozyme on peritoneal cells as well. They have studied the mechanism that determines heightened lysozyme secretion owing to instability of lysosomal macrophages' membrane within viruses' action.

Pacific Medical Journal, 2003, No. 2, p. 57-58.

Существует множество других опосредованных воздействий, ведущих к несовершенству фагоцитоза при вирусных инфекциях: дефицит Т-лимфоцитов и/или продуцируемых ими лимфокинов, активирующих МФ, нарушения в системе аутостимуляции и аутоингибиции макрофага, выражающиеся в диспропорции биологически активных веществ (компоненты комплемента, интерферон, ферменты и т.д.)

Наиболее тесная связь вирусов в процессе воспаления с макрофагами находит свое отражение в особенностях ферментативно-альтерирующих процессов в бронхолегочной системе. При этом секретируются не сериновые, а металлопротеиназы (коллагеназа, эластаза), ответственные за разрастание соединительной ткани и развитие эмфиземы. В отличие от коллагеназы нейтрофилов коллагеназа, продуцируемая активированными макрофагами, менее активна в отношении коллагена I типа, однако обеспечивает более пролонгированный, менее острый характер деструкции, в основе которой лежит циклическая закономерность: лишенные гликозамино-гликанового окружения и расщепленные коллагеназами пучки коллагена лучше связывают фибронектин и хемотаксические факторы, что способствует притоку их новых порций. Круг замыкается и начинается вновь. Вслед за альтерацией наступает период пролиферации соединительной ткани. Усилению фиброзирующих процессов способствуют и клетки поврежденной легочной паренхимы, которые активируют цепочку Т-лимфоциты - лимфокины - макрофаги.

Особенностью хронического вирусного воспаления, наряду с длительной продукцией металлопротеиназ, является нередкое размножение вирусных агентов внутри макрофага, процесс проникновения через Fc рецепторы значительно облегчается в условиях большого количества противовирусных антител и иммунных комплексов, что нередко отмечается при таких хронических формах бронхолегочной патологии, как хроническая обструктивная болезнь легких и бронхиальная астма. Избыток антител, как показали исследователи США, к сожалению, обладает не только противовирусным, но и выраженным повреждающим воздействием на клетки, в основе которого лежит активный протеолиз.

Несмотря на колоссальную роль макрофагов в развитии воспалительных реакций при вирусных инфекциях, они представляют лишь часть поступенчатой защиты организма. Основные реакции могут быть условно подразделены на два этапа: неспецифический и специфический.


В неспецифический этап воспаления включается следующее:
- презентация антигена Т-хелперам с помощью антиген-презентующих клеток (АПК): макрофагов, клеток Лангерганса в коже, вуалевых клеток лимфатических сосудов и дендритных клеток селезенки;
- секреция активированными АПК растворимых медиаторов воспаления, прежде всего интерлейкина-1 (а и (3 ), который через многообразные клетки-мишени (нейтрофилы, макрофаги, Т- и В-лимфоциты, фибробласты, гепатоциты и т.д.) стимулирует продукцию ряда других биологических веществ - цитокинов. Последние подразделяют на монокины - продукты моноцитов и макрофагов, а также лимфокины - продукты лимфоцитов.

Монокины (ИЛ-1, фактор некроза опухоли, интерфероны а и (3, a также натуральные киллерныс клетки (НК), появляются в первую очередь (через 1-2 часа от начала вирусной стимуляции) и осуществляют первую линию противоинфекционной защиты.

Лимфокины (большая часть остальных интерлейкинов) регистрируются позднее: так, ИЛ-2 через 2 часа, ИЛ-4 через 4 часа, ИЛ-10 через 6 часов, и, наконец, ИЛ-9 через 24 часа от начала антигенной стимуляции. Пики выработки лимфокинов определяются в пределах от 24 до 72 часов. Более поздние сроки формирования лимфокинов связаны с необходимостью предварительной дифференцировки СД4+ - Т-клеток в хелперы двух основных классов (1 и 2), требующей синтеза ряда новых белков. Лимфокины, как правило, ответственны за вторую специфическую линию защиты.

Несмотря на различное происхождение, принципы действия обеих разновидностей цитокинов одинаковы: выраженная локальность воздействия, преимущественно в очаге поражения органа; при первичной встрече с вирусом цитокины практически не поступают в кровоток и лишь при интенсивном и длительном воспалении, чаще при хронических бронхолегочных процессах и хронических вирусных инфекциях, удается обнаружить значительные уровни монокинов и лимфокинов как в очаге воспаления, так и в крови.

Большое разнообразие цитокинов и нередкая стандартность клеточного ответа на различные стимулы приводит к значительному перекрыванию одних и тех же иммунных защитных реакций. Подобный дубляж обеспечивает большую надежность защиты от чужеродного агента.

Варианты взаимодействия цитокинов чрезвычайно сложны, многообразны и до конца не изучены. Не уточнен характер отношений между макрофагами и Т-хелперами 2 типа. Полагают, что источником иммунного гамма-интерферона (лимфокина) и ИЛ-4, которые соответственно стимулируют продукцию Т-хелперов 1 и 2 типов, могут служить активированные натуральные киллеры и тучные клетки, осуществляющие антигеннеспецифический контроль. Между Т-хелперами 1 и 2 типа на уровне цитокинов отношения взаимоингибирующие, опосредованные через гамма-интерферон и ИЛ-10.

Помимо противовоспалительного воздействия цитокинов, к числу важнейших факторов противовирусной защиты следует отнести антигенспецифическое цитолитическое (ЦТЛ) воздействие Т-лимфоцитов (СД8+). Они представляют собой чрезвычайно важные эффекторы, препятствующие развитию вирусных инфекций, однако при определенных условиях способны повреждать и обширные участки ткани больного. Наиболее существенно, что индукция и экспрессия цитотоксичности лимфоцитов осуществляется в соответствии с основными классами гистосовместимости (HLA -А, -В и -С антигенам у человека). Для индукции Т-цитотоксического ответа вирус обязательно должен быть презентован и распознан в комплексе с клеточными антигенами хозяина, возможно, что при этом вирусный антиген включается в плазматическую мембрану презентующих клеток. Максимум Т-цитотоксической активности наблюдается примерно через 5-9 часов дней от начала ее регистрации, затем образуются клетки памяти; после вторичного контакта с вирусом определенной разновидности цитолитическое и одновременно иммуносупрессорное воздействие Т-лимфоцитов СД8+ выявляется в более ранние сроки. Учитывая эти факты, не удивительно, что более неблагоприятно протекают повторные ОРЗ, обусловленные одной и той же разновидностью вируса, а не частые ОРЗ, вызванные различными вирусными агентами.

У РНК-содержащих ретровирусов сначала происходит обратная транскрипция генома в ДНК, затем ее интеграция в клеточные хромосомы и лишь после этого транскрипция генов.

Цитопатические эффекты при вирусных инфекциях разнообразны, они определяются как вирусом, так и клеткой и сводятся к разрушению клетки (цитолитический эффект), сосуществованию вируса и клетки без гибели последней (латентная и персистирующая инфекция) и трансформации клетки.

Вовлеченность организма в инфекционный процесс зависит от ряда обстоятельств - количества погибших клеток, токсичности вирусов и продуктов распада клеток, от реакций организма, начиная от рефлекторных и заканчивая иммунными. Количество погибших клеток влияет на тяжесть инфекционного процесса. Например, будут ли поражены при гриппе только клетки носа и трахеи или вирус поразит клетки эпителия альвеол, зависит тяжесть и исход болезни.

Хотя вирусы и не образуют типичных токсинов, однако и вирионы, и вирусные компоненты, накапливающиеся в пораженных тканях, выходя в кровоток, оказывают токсическое действие. Неменьшее токсическое действие оказывают и продукты распада клеток. В этом случае действие вирусной инфекции столь же неспецифично, как и действие патогенных организмов, убивающих клетки и вызывающих их аутолиз. Поступление токсинов в кровь вызывает ответную реакцию - лихорадку, воспаление, иммунный ответ. Лихорадка является преимущественно рефлекторным ответом на поступление в кровь и воздействие на ЦНС токсичных веществ.

Если лихорадка - общий ответ организма на вирусную инфекцию, то воспаление - это местная многокомпонентная реакция. При воспалении происходят инфильтрация пораженных тканей макрофагами, утилизация продуктов распада, репарация и регенерация. Одновременно развиваются реакции клеточного и гуморального иммунитета. На ранних стадиях инфекции действуют неспецифические киллеры и антитела класса IgM. Затем вступают в действие основные факторы гуморального и клеточного иммунитета. Однако гораздо раньше, уже в первые часы после заражения, начинает действовать система интерферона, представляющая семейство секреторных белков, вырабатываемых клетками организма в ответ на вирусы и другие стимулы. Описанные явления относятся к так называемой острой репродуктивной вирусной инфекции. Взаимодействие вируса и клеток может происходить, как отмечалось выше, без гибели последних. В этом случае говорят о латентной, т.е. бессимптомной или персистирующей хронической вирусной инфекции. Дальнейшая экспрессия вируса, образование вирусспецифических белков и вирионов вызывает синтез антител, на этой стадии латентная инфекция переходит в персистирующую и появляются первые признаки болезни.

Репродукция вируса в клетках сопровождается развитием цитопатических процессов, специфичных для разных вирусов и для разных типов инфекционных процессов. Цитопатические процессы при вирусных инфекциях разнообразны, они определяются как вирусом, так и клетками, причем специфика их больше "задается" клеткой, нежели вирусом, и сводится в основном к разрушению клеток, сосуществованию вируса и клеток без гибели последних и трансформация клеток. Несмотря на значительные различия цитоцидного действия разных вирусов, в общем, они сходны. Подавление синтеза клеточных макромолекул - нуклеиновых кислот и белков, а также истощение энергетических ресурсов клетки ведут к необратимым процессам, заканчивающимся гибелью пораженной клетки. Повреждение клеток вирусами, их отмирание и распад переносят вирусную инфекцию с клеточного уровня на уровень организма в целом.

При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, - делая клетки непригодными для размножения вирусов.

Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ.

Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки.

Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага.

Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Этот пик наблюдается совместно с ФНО-альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. В качестве основных эффекторных клеток воспалительного процесса, они обеспечивают элиминацию инфекта из организма.

Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. Рецепторы ИЛ-10 имеют гомологию рецепторов интерферона, и подобно ИЛ-10 индуцирует экспрессию в моноцитах гена Fc- рецептора. Для полного функционирования цитокиновой системы необходимы повышение уровня цитокина в ответ на инфект и экспрессия нормального количества рецепторов к ним на клетках. Изменение рецепторов после их связывания с цитокином заключается в интернализации комплексов цитокин - рецептор внутрь клетки. На поверхности клеток рецептор появляется заново, постепенно синтезируясь в течение 24-36 ч (время появления рецепторов интерферон-альфа). В этот период клетки остаются чувствительными к последующим дозам цитокина, чем объясняется эффективность введения препаратов интерферона и их индукторов три раза в неделю.

Пик продукции цитокинов после стимуляции макрофагов наблюдается через 1-2,6,18-48 ч, а пик продукции интерферон-гамма наступает через 20 ч после первого выхода цитокина из клетки. Поскольку интерферон-гамма ингибирует миелопоэз, то нормализация числа нейтрофилов после элиминации инфекта связана с системой регуляции нейтропоэза. Через 6 ч после стимуляции интерферон-альфа для выполнения своих функций NK-rклетки (активность которых регулируется ИЛ-1, 4, 2) продуцируют гамма-интерферон, в результате чего происходит лизис инфицированных клеток.

При антигенной стимуляции клеток трансдукция сигнала с активированного рецептора на генетический аппарат осуществляется с помощью внутриклеточных регуляторных систем, компоненты которых (белки мембран, ферментов, хроматина) связываются с чувствительными к ним последовательностями ДНК. После связывания цитокина (интерферон) с поверхностными клеточными мембранными рецепторами происходит активация ферментов протеинкиназы-С (ПКС), тирозинкиназы, ц-АМФзависимой протеинкиназы, серин-треонинкиназы. Интерферон-альфа активирует tyk 2 и jak 1-киназы, а интерферон-гамма активирует jak 1 и 2-киназы. Далее факторы транскрипции перемещаются в ядро клетки и связывают гены раннего ответа.

Первый ответ клеток на цитокин - это быстрая индукция генов раннего ответа ("immediate early" генов), в число которых и входит ген интерферон-гамма. Стимуляция экспрессии этих генов важна для выхода клеток из Go-стадии и перехода в Gi-стадию и дальнейшей прогрессии клеточного цикла. Их индукция происходит после активации рецепторов роста на клеточной мембране и активации протеин-киназной системы. Гены раннего ответа являются ключевыми регуляторами клеточной пролиферации и дифференцировки, кодируют белки, регулирующие репликацию ДНК.

Таким образом, при активации клеток происходит стимуляция генов раннего ответа, что ассоциируется с изменением фаз клеточного цикла. Основная протективная роль в иммунном ответе, направленном против внутриклеточных паразитов (грибы, простейшие, вирусы, микобактерии туберкулеза), принадлежит клеточным механизмам. Способность перечисленных возбудителей переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации возбудителя необходим специфический клеточно-опосредованный ответ. Его специфичность определяется антигенраспознающими СД8+-Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов. Решающий момент специфического иммунного ответа - это ответ СД4+Т-лимфоцитов с хелперной направленностью на распознавание антигена. На этом этапе определяется форма иммунного ответа: либо с преобладанием гуморального иммунитета, либо с преобладанием клеточных реакций (ГЗТ). Направление дифференцировки СД4 + -лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии ИЛ-12 и интерферон-гамма СД4 + -лимфоциты дифференцируются в воспалительные Тh1-клетки, начинают продуцировать и секретировать интерлейкин-2, интерферон-гамма, ФНО и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а интерферон-гамма - естественными киллерами, активированными в раннюю фазу ответа на внутриклеточно паразитирующие бактерии и вирусы. В отличие от этого, в присутствии ИЛ-4 СД4 + -лимфоциты дифференцируются в хелперы Тh 2, которые начинают продуцировать и секретировать ИЛ-4, ИЛ-5, ИЛ-6 и запускают гуморальный иммунный ответ, т.е. синтез специфических антител - иммуноглобулинов. Воспалительные Тh 1-лимфоциты нужны для борьбы с внутриклеточными паразитами, а Тh 2 хелперы нужны для элективной защиты от внеклеточных паразитов.

Вирусная инфекция может вызывать быстрое подавление экспрессии ряда клеточных генов (из которых наиболее изучены интерфероновые гены и гены, кодирующие дс-РНК-зависимые ферменты -2,5-ОАС и ПК-дс), принимающих участие в антивирусном действии. Специальные исследования механизма антивирусного действия интерферонов и дс-РНК в клеточных и бесклеточных системах показали ключевую роль в этом процессе вышеуказанных ферментов. ПК-дс, взаимодействуя с дс-РНК, фосфорилируется и в активной форме фосфорилирует регуляторные факторы транскрипции и трансляции, из которых наиболее изучен инициирующий фактор трансляции (eIF2).

ПК-дс выполняет регуляторную роль в системе клеточной пролиферации на уровне факторов трансляции и активации ряда генов цитокинов. Вероятно, существует связь между подавлением транскрипции мРНК и ПК-дс, угнетением общего синтеза клеточного белка при вирусных инфекциях и накоплением в ядрах клеток белка нуклеокапсида и белка NSP2. Фрагментация клеточных хромосом, наблюдающаяся на ранних сроках вирусной инфекции, может быть одной из причин подавления экспрессии генов, участвующих в противовирусном ответе.

Есть основания предполагать участие белков NSP2 в регуляции активности генов цитокинов - низкомолекулярных белковых регуляторных веществ, продуцируемых клетками и способных модулировать их функциональную активность. Нарушения в системе цитокинов приводят к нарушению кооперативных взаимодействий иммунокомпетентных клеток и нарушению иммунного гомеостаза.

В последние годы показано, что ИЛ- 12, относящийся к провоспалительным цитокинам, является ключевым для усиления клеточно-опосредованного иммунного ответа и инициации эффективной защиты против вирусов.

Средства терапии гриппа и ОРЗ можно разделить на этиотропные, иммунокорригирующие, патогенетические и симптоматические. Приоритет принадлежит этиотропным препаратам, действие которых направлено непосредственно на возбудитель инфекции. Все препараты этиотропного действия целесообразно рассматривать с учетом их точек приложения в цикле репродукции вирусов гриппа и других ОРЗ.

Применение химиопрепаратов для профилактики и лечения гриппа и ОРЗ относится к базовой терапии и является общепризнанным мировым стандартом. Многолетние клинические исследования достоверно выявили их высокую лечебно-профилактическую значимость. Химиотерапевтические средства представлены тремя основными группами: это блокаторы М2-каналов (амантадин, ремантадин); ингибиторы нейраминидазы (занамивир, озельтамивир) и ингибиторы протеаз (амбен, аминокапроновая кислота, трасилол). Препараты оказывают прямое антивирусное действие, нарушая различные фазы репликативного цикла вирусов. Несколько особняком стоит группа вирулицидных препаратов, применяемых местно для предотвращения адсорбции и проникновения вирионов в клетки.

  1. Грипп и другие респираторные вирусные инфекции / под ред. О.И. Киселева, И.Г. Мариничева, А.А. Сомининой. - СПб, 2003.
  2. Дриневский В.П., Осидак Л.В., Цыбалова Л.М. Острые респираторные инфекции у детей и подростков // Практическое руководство под редакцией О.И. Киселева. - СПб, 2003.
  3. Железникова Г.Ф., Иванова В.В., Монахова Н.Е. Варианты иммунопатогенеза острых инфекций у детей. СПб, 2007. - 254 с.
  4. Ершов Ф.И. Грипп и другие ОРВИ // Антивирусные препараты. Справочник. - М., 2006. - С.226-247.
  5. Ершов Ф.И., Романцов М.Г. Антивирусные средства в педиатрии. - М., 2005. - С.159-175.
  6. Ершов Ф.И., Киселев О.И. Интерфероны и их индукторы (от молекул до лекарств). М., 2005. - С.287-292.
  7. Иванова В.В. Острые респираторно-вирусные заболевания // Инфекционные болезни у детей. - М., 2002.
  8. Онищенко Г.Г., Киселев О.И., Соминина А.А. Усиление надзора и контроля за гриппом как важнейший элемент подготовки к сезонным эпидемиям и очередной пандемии. - М., 2004. - С.5-9.
  9. Об утверждении стандарта медицинской помощи больным гриппом, вызванным идентифицированным вирусом гриппа (грипп птиц) // Приказ Минздравсоцразвития №460 от 07.06.2006 г.
  10. Романцов М.Г., Ершов Ф.И.Часто болеющие дети: Современная фармакотерапия. - М., 2006. - 192 с.
  11. Стандартизированные принципы диагностики, лечения и экстренной профилактики гриппа и других острых респираторных инфекций у детей / под ред. О.И. Киселева. - Санкт-Петербург. - 2004. - С.82-95.
  12. Лекарственные средства в фармакотерапии патологии клетки / под ред. Т.Г.Кожока. - М., 2007.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.