Кому принадлежит честь открытия вирусов

В статье поговорим об истории открытия вирусов. Это интересная тема, которой в современном мире выделяется не так уж много внимания, а зря. Сначала мы разберемся с тем, что же такое сам вирус, а затем поговорим о других аспектах этого вопроса.

Вирус

Вирус — это неклеточный инфекционный организм, который может размножаться только внутри живых клеток. Кстати, с латинского это слово переводится дословно как "яд". Эти образования могут поражать все типы живых организмов, начиная от растений и заканчивая бактериями. Также есть вирусы, которые могут размножаться только внутри других своих собратьев.


Исследование

Начало исследованиям было положено в 1892 году. Тогда Дмитрий Ивановский опубликовал свою статью, в которой описывал патоген растений табака. В 1898 году Мартином Бейеринком был открыт вирус табачной мозаики. С того момента учёные описали уже около 6000 различных вирусов, хотя они полагают, что существует их более 100 миллионов. Отметим, что эти образования - самая многочисленная биологическая форма, которая присутствует в любой экосистеме на Земле. Изучением их занимается вирусология, а именно - раздел микробиологии.

Краткое описание

Отметим, что пока вирус находится вне клетки или в процессе зарождения он является независимой частицей. Обычно состоит из трех компонентов. Первый - это генетический материал, который представлен ДНК или РНК. При этом отметим, что некоторые вирусы могут иметь два вида молекул. Вторая составляющая - это белковая оболочка, которая защищает сам вирус и его липидную оболочку. По её наличию отличают вирусы от подобных инфекционных бактерий. В зависимости от типа нуклеиновой кислоты, которая по сути является генетическим материалом, разделяют вирусы ДНК-содержащие и РНК-содержащие. Ранее к вирусам относили прионы, но потом оказалось, что это ошибочное мнение - это обычные возбудители, которые состоят из инфекционного материала и не имеют в своем составе нуклеиновых кислот. Форма вируса может быть очень разнообразной: начиная от спиральной и заканчивая гораздо более сложными структурами. Размеры этих образований составляют примерно одну сотую бактерии. При этом большинство вирусов настолько малы, что их невозможно отчётливо разглядеть даже на световом микроскопе.


Форма жизни

По форме жизни такие организмы являются облигатными паразитами, так как воспроизводиться вне клетки они не могут. Находясь в такой среде, частицы не проявляют никаких признаков живых организмов. От паразитов вирусы отличаются тем, что у них полностью отсутствует энергетический и основной обмен, а также важный элемент всех живых систем - синтез белка, сложность которого превышает даже структуру вируса.

Появление

История открытия вируса умалчивает, как они появились на эволюционном древе. Это действительно очень интересный вопрос, который еще недостаточно изучен. Предполагается, что некоторые вирусы могли образоваться из небольших молекул ДНК, которые могли передаваться между клетками. Есть ещё вариант того, что вирусы произошли от бактерий. При этом, благодаря своей эволюции, они являются важным элементом при горизонтальном переносе генов и обеспечивают генетическое разнообразие. Некоторые учёные считают такие образования отличительной формой жизни по некоторым признакам. Во-первых, есть генетический материал, способность воспроизводиться и эволюционировать естественным путем. Но при этом у вирусов нет очень важных характеристик живых организмов, например, клеточного строения, которое является основным свойством всего живого. Из-за того, что вирусы обладают только частью характеристик живого, их относят к формам, существующим на краю жизни.


Распространение

Распространяться вирусы могут по-разному, существует много различных способов. Они могут передаваться от растения к растению при помощи насекомых, которые питаются растительными соками. Для примера можно привести тлю. У животных вирусы могут распространяться при помощи кровососущих насекомых, переносчиков бактерий. Как мы знаем, вирус гриппа распространяется в воздухе при чихании и кашле. Например, ротавирус и норовирус могут передаваться при контакте с зараженной пищей или жидкостью, то есть фекально-оральным способом. ВИЧ - это один из немногих вирусов, который может передаваться путем переливания крови и при половых контактах.

Каждый новый вирус имеет определенную специфику по отношению к своим хозяевам. При этом круг хозяев может быть узким или широким, в зависимости от того, насколько много клеток удалось поразить. Животные реагируют на заражение иммунным ответом, который заключается в том, что уничтожаются болезнетворные организмы. Вирусы как форма жизни довольно приспосабливаемы, поэтому уничтожить их не так просто. У человека иммунным ответом может служить вакцина против конкретных инфекций. Однако некоторые организмы могут пройти через внутреннюю систему безопасности человека и вызвать хроническую болезнь. Это вирус иммунодефицита человека и различные гепатиты. Как известно, антибиотики не могут воздействовать на такие организмы, но, несмотря на это, ученые разработали эффективные противовирусные препараты.


Термин

История исследований

Вирусы в микробиологии стали чем-то новым, но данные о них накапливались постепенно. В результате развития науки стало понятно, что не все вирусы вызываются патогенами, микроскопическими грибами или протистами. Отметим, что исследователь Луи Пастер так и не смог найти агент, который вызывает бешенство. Из-за этого он предположил, что тот настолько мал, что рассмотреть его под микроскопом невозможно. В 1884 году Шарль Шамберлан - известный микробиолог из Франции - изобрел фильтр, поры которого гораздо меньше бактерий. При помощи этого инструмента можно полностью удалить бактерии из жидкости. В 1892 году российский микробиолог Дмитрий Ивановский использовал этот аппарат для исследования вида, который позже получил название вируса табачной мозаики. Эксперименты ученого показали, что даже после фильтрации сохраняются инфекционные свойства. Он предположил, что инфекция может быть спровоцирована токсином, который выделяют бактерии. Однако тогда мужчина не стал дальше развивать эту идею. В то время были популярны идеи о том, что любой патоген можно определить при помощи фильтра и вырастить в питательной среде. Отметим, что это один из постулатов теории болезни на уровне микробов.


"Кристаллы Ивановского"

Жизненный цикл вируса и дальнейшее исследование

В начале прошлого века английский бактериолог Фредерик Туорт открыл группу вирусов, которые могли размножаться в бактерии. Сейчас такие организмы называются бактериофагами. Одновременно с этим канадский микробиолог Феликс Дэрелль описал вирусы, которые при контакте с бактериями могут образовывать вокруг себя пространство с погибшими клетками. Он сделал суспензии, благодаря которым сумел определить наименьшую концентрацию вируса, при которой погибают не все бактерии. Сделав необходимые расчеты, он смог определить первоначальное число вирусных единиц в суспензии.

Жизненный цикл вируса активно исследовали в начале прошлого века. Тогда стало известно, что эти частицы могут обладать инфекционными свойствами, проходить через фильтр. При этом им необходим живой хозяин для размножения. Первые микробиологи проводили исследования вирусов только на растениях и животных. В 1906 году Росс Грэнвилл Гаррисон изобрел уникальный способ выращивания тканей в лимфе.


Прорыв

Одновременно с этим происходили открытия новых вирусов. Происхождение их до сих пор оставалось и остается на сегодняшний день загадкой. Отметим, что открытие вируса гриппа принадлежит американскому исследователю Эрнесту Гудпасчеру. В 1949 году был открыт новый вирус. Происхождение его было неизвестно, но организм удалось вырастить на клетках зародыша человека. Таким образом был открыт первый полиовирус, выращенный на живых тканях человека. Благодаря этому была создана важнейшие полиовакцина против полиомиелита.


Изображение вирусов в микробиологии появились благодаря изобретению электронного микроскопа инженерами Максом Кноллем и Эрнстом Руской. В 1935 году американским биохимиком было проведено исследование, которое доказало, что вирус табачной мозаики состоит в основном из белка. Чуть позже эту частицу разделили на белковую и РНК-составляющую. Удалось кристаллизовать вирус мозаики и гораздо более детально изучить его структуру. Первая рентгенограмма была получена в конце 1930-х годов благодаря ученым Барналю и Фэнкухену. Прорыв вирусологии приходится на вторую половину прошлого века. Именно тогда ученые открыли более 2000 различных видов вирусов. В 1963 году произошло открытие вируса гепатита B Бламбергом. В 1965 году был описан первый ретровирус.

Подводя итоги хочется сказать о том, что история открытия вирусов очень интересна. Она позволяет понять многие процессы и разобраться в них более детально. Однако хотя бы поверхностное представление необходимо иметь для того, чтобы идти в ногу со временем, ведь прогресс развивается семимильными шагами.

ГЛАВА 1. ИСТОРИЯ ВИРУСОЛОГИИ

МОДУЛЬ 1. ОБЩАЯ ВИРУСОЛОГИЯ

История вирусологии довольно необычна. Первая вак­цина для предупреждения вирусной инфекции — оспы была предложена английским врачом Э. Дженнером в 1796 г., почти за сто лет до открытия вирусов, вторая вакцина — антирабическая, была предложена основателем микробиологии Л. Пастером в 1885 г. — за семь лет до открытия вирусов.

Честь открытия вирусов принадлежит нашему сооте­чественнику Д.И. Ивановскому, который впервые в 1892 г. доказал существование нового типа возбудителя болезней на примере мозаичной болезни табака.


Рис. 1. Дмитрий Иосифович Ивановский – основатель вирусологии.

Ивановский установил, что болезнь табака, распространенная в Крыму, вызывается вирусом, который обладает высокой заразительностью и строго выраженной специфичностью действия. Это открытие показало, что наряду с клеточными формами существуют живые системы, невидимые в обычные световые микроскопы, проходящие через мелкопористые фильтры и лишенные клеточной структуры.

Спустя 6 лет в 1898 г. после открытия Д.И. Ивановского гол­ландский ученый М. Бейеринк подтвердил данные, полученные русским ученым, придя, однако, к вы­воду, что возбудитель табачной мозаики — жидкий живой контагий. Ивановский с этим выводом не согла­сился. Благо­даря его замечательным исследованиям ого Ф. Леффлер и П. Фрош в 1897 г. установили вирусную этиоло­гию ящура, показали, что возбудитель ящура также проходит через бактериальные фильтры. Ивановский, анализируя эти данные, пришел к выводу, что агенты ящура и табачной мозаики принци­пиально сходны. В споре с М. В. Бейеринком прав ока­зался Ивановский.

В дальнейшем были открыты и изучены возбуди­тели многих вирусных заболеваний человека, животных и растений.

Ивановский от­крыл вирус растений. Леффлер и Фрош открыли вирус, поражаю­щий животных. Наконец, в 1917 г. Д'Эррель открыл бактериофаг — вирус, по­ражающий бактерии. Та­ким образом, вирусы вызывают болезни растений, живот­ных, бактерий.

В 1892 г. современник Пастера и ближайший сотрудник И.И. Мечникова Н.Ф. Гамалея (1859-1949 гг.) обнаружил явле­ние спонтанного растворения микробов, которое, как было установлено Д'Эреллем, обусловлено действием вируса бак­терий — фага.

Под руководством И.И. Мечникова Н.Ф. Гамалея участво­вал в создании первой бактериологической станции в России и второй в мире пастеровской станции. Его исследования посвя­щены изучению инфекции и иммунитета, изменчивости бакте­рий, профилактике сыпного тифа, оспы, чумы и других болезней.

В 1935 году У.Стенли из сока табака, пораженного мозаичной болезнью, выделил в кристаллическом виде вирус табачной мозаики (ВТМ). За это в 1946 году ему была вручена Нобелевская премия.

В 1958 году Р.Франклин и К.Холм, исследуя строение ВТМ, открыли, что ВТМ является полым цилиндрическим образованием.

В 1960 году Гордон и Смит установили, что некоторые растения заражаются свободной нуклеиновой кислотой ВТМ, а не целой частицей нуклеотида. В этом же году крупный советский ученый Л.А.Зильбер сформулировал основные положения вирусогенетической теории.

В 1962 году американские ученые А.Зигель, М.Цейтлин и О.И.Зегал экспериментально получили вариант ВТМ, не обладающий белковой оболочкой, выяснили, что у дефектных ВТМ частиц белки располагаются беспорядочно, и нуклеиновая кислота ведет себя, как полноценный вирус.

В 1968 году Р.Шепард обнаружил ДНК-содержащий вирус.

Одним из крупнейших открытий в вирусологии является открытие большинства структур различных вирусов, их генов и кодирующих ферментов - обратная транскриптаза. Назначение этого фермента - катализировать синтез молекул ДНК на матрице молекулы РНК.

В развитии вирусологии большая роль принадлежит отечественным ученым: И.И. Мечникову (1845-1916гг.), Н.Ф. Гамалея (1859-1949гг.), Л.А. Зильбер (1894-1966г.), В.М. Жданову (1914-1987гг.), З.В. Ермольевой (1898-1979гг.), А.А. Смородинцеву (1901-1989гг.), М.П. Чумакову (1909-1990гг.) и др.

В вирусологии рассматриваются несколько периодов развития.

Заболевания растений, животных и человека, вирусная природа которых в настоящее время установлена, в течение многих столетий наносили ущерб сельскому хозяйству и вред здоровью человека.

Многие из них были описаны очень давно, но попытки установить их причину и обнаружить возбудителя оставались безуспешными. Первую вакцину для предупреждения вирусной инфекции—оспы предложил английский врач Э. Дженнер в 1796 г., почти за сто лет до открытия вирусов. Он впервые осуществил мечту человечества: обуздать одну из самых страшных болезней человека — натуральную оспу с помощью вакцинации — искусственной прививки возбудителя коровьей оспы. Вторая вакцина — против бешенства была предложена основателем микробиологии Л. Пастером в 1885 г., за семь лет до открытия вирусов.

Открытие вирусов принадлежит русскому ученому-ботанику — Д. И. Ивановскому (1864—1920).

В феврале 1892 г. на заседании Российской академии наук Д. И. Ивановский сообщает, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату считают днем рождения вирусологии, а Д. И. Ивановского — ее основоположником.

В 1897 г. Ф. Леффлер и П. Фрош, используя принцип фильтруемости, примененный Д. И. Ивановским, показали, что возбудитель ящура животных — вирус. Затем последовало открытие возбудителей чумы крупного рогатого скота, чумы собак, саркомы Роуса и других болезней животных. В 1915 г. Ф. Ту орт и в 1917 г. Ф. д’Эрелль открыли вирусы бактерий — бактериофаги. Появлялись многочисленные сообщения о вирусной природе кори, полиомиелита, гриппа, энцефалита и т. д.

В потоке новостей о вирусах были и затишья, продолжавшиеся до тех пор, пока не появились новые методы их выделения, культивирования и идентификации. В 30—40-х годах XX в. основной экспериментальной моделью были лабораторные животные, чувствительные к ограниченному количеству вирусов. В 40-е годы в вирусологию в качестве экспериментальной модели входят развивающиеся куриные эмбрионы, которые позволили открыть и культивировать много новых вирусов: кори, инфекционного ларинготрахеита птиц, оспы птиц, ньюкаслской болезни и др. Использование этой модели стало возможным благодаря исследованиям австралийского вирусолога и иммунолога Ф. М. Бернета и американского вирусолога А. Херши.

Подлинное революционное событие в вирусологии — открытие возможности культивировать клетки в искусственных условиях. В 1952 г. Д. Эндерс, Т. Уэллер, Ф. Роббинс получили Нобелевскую премию за разработку метода культуры клеток. Использование культуры клеток является эффективным методом для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой.

По мере достижения успехов в создании новых методов исследования расширялось представление о мире вирусов, их природе, характере взаимодействия с чувствительными клетками организма, особенностях противовирусного иммунитета, экологии ряда вирусов, их роли в онкогенных процессах и эволюции ряда вирусных болезней человека и животных.

Со времени открытия вирусов по настоящее время представления о природе вирусов претерпели значительные изменения. По мере изучения природы вирусов в первые 50 лет после их открытия формировались представления о вирусах как о мельчайших организмах на основании наличия у них свойств, характерных для других организмов: 1) вирусы способны к размножению; 2) они обладают наследственностью, воспроизводя себе подобных. Наследственные признаки вирусов можно учитывать по спектру поражаемых ими хозяев и симптомов заболеваний и специфичности иммунных реакций. Сумма этих признаков позволяет определить наследственные свойства вируса; 3) вирусы обладают изменчивостью; 4) как другие организмы, они характеризуются приспособляемостью к условиям внешней среды — через организм хозяина; 5) вирусы эволюционируют, и движущий силой их эволюции является естественный отбор.

На примере вируса гриппа А можно проследить эволюцию, темпы которой измеряются не миллионами и даже не тысячами лет, а немногими годами. Незначительные изменения его антигенной структуры происходят ежегодно, а резкие смены антигенов — 1 раз в 10—15 лет. Подобных темпов естественной эволюции не знает ни одна группа других организмов.

Главным фактором естественного отбора в этом процессе является искусственный отбор, применяемый для выведения полезных пород животных и сортов растений. Классическим примером искусственного отбора являются работы J1. Пастера по получению вакцинного штамма — фикс-вируса бешенства, а также разработка живых вакцин против чумы крупного рогатого скота, чумы свиней, полиомиелита и других болезней.

На рубеже середины XX в. выход естественных наук на молекулярный уровень стимулировал дальнейшее развитие вирусологии, иммунологии, генетики. Создание электронного микроскопа сделало видным мир вирусов и макромолекулярных соединений. Использование молекулярных методов в вирусологии позволило установить строение (архитектуру) вирусных индивидуумов — вирионов (термин введен французским микробиологом А. Львовым), способы проникновения вирусов в клетку и их репродукцию. Исследования показали, что генетическое вещество вирусов — ДНК или РНК. Нуклеиновые кислоты вирусов заключены в футляр-капсид из белковых молекул, у сложных вирусов могут быть внешние оболочки (суперкапсидные), состоящие из белков, углеводов и липидов.

С развитием исследований молекулярной биологии вирусов стали накапливаться факты, противоречащие представлению о вирусах как микроорганизмах по следующим уникальным свойствам:

К вирусам примыкают вироиды-агенты, открытые Т. О. Дайнером в 1972 г., вызывающие заболевание некоторых растений и способные передаваться как обычные инфекционные вирусы. Вироиды — это сравнительно небольшие молекулы РНК (300—400 нуклеотидов), лишенные белковой оболочки. Механизм репликации вироидов не вполне ясен.

Многие годы считали, что некоторые медленные инфекции у человека (Куру, болезнь Крейтцфельлта—Якоба, синдром Герстманна—Штрейусслера—Шейнкера и др.) и животных (энцефалопатия у крупного рогатого скота, норок и др.) вызывают вирусы. Однако оказалось, что причиной этих болезней является новый патогенный агент — прион, открытый в начале 80-х годов XX в. американским биохимиком Стенли Прузинером.

Вирусы являются неклеточными формами жизни. По-видимому, вирусы можно рассматривать как биологические образования, несущие генетическую информацию, которую они реализуют только в живых клетках человека, животных и растений.

О происхождении вирусов высказывались разные предположения. Одни авторы считают, что вирусы являются результатом крайнего проявления регрессивной эволюции бактерий и других одноклеточных организмов. Эту гипотезу большинство вирусологов не разделяют.

Согласно второй гипотезы вирусы — потомки древних, доклеточных форм жизни. Эту гипотезу большинство исследователей также не разделяют.

В 1974 г. В. М. Жданов высказал гипотезу, согласно которой вирусы — важный фактор эволюции органического мира. Преодолевая видовые барьеры, вирусы могут переносить отдельные гены или их группы, а интеграция вирусной ДНК с хромосомами клеток может приводить к тому, что вирусные гены становятся клеточными генами, выполняющими важные функции.

Почему вирусология, которая зародилась в недрах микробиологии, за последние годы достигла такого стремительного успеха, став одной из ведущих и профилирующих дисциплин медикобиологической и ветеринарных наук? Этому способствовал ряд обстоятельств.

Во-первых, по мере сокращения роли бактерий, простейших и грибов в инфекционной патологии человека и животных, для лечения и профилактики которых имеются надежные биологические и химиотерапевтические препараты, роль вирусов возросла. Против многих вирусных болезней ни медицинская, ни ветеринарная наука еще не создала подобных препаратов. Так, до сих пор не решены проблемы с такими болезнями, как грипп, бешенство, ящур и др.

Во-вторых, возможность использования вирусов в качестве биологической модели. Таким образом, многие фундаментальные открытия в области биологии были сделаны благодаря вирусам (механизм репликации ДНК, механизм синтеза белка и др.).

В-третьих, установлено, что в широко распространенных респираторно-кишечных болезнях молодняка, наносящих огромный экономический ущерб, большую роль играют вирусы из различных таксономических групп (адено-, рота-, корона-, парамиксовирусы, вирусы диареи и др.). Оказалось, что при появлении вспышек этих заболеваний тесно взаимодействуют различные вирусы, бактерии, хламидии и стрессовые факторы.

В-четвертых, отдельные виды патологии (врожденные уродства, пороки развития и пр.), где роль вирусов даже не подозревалась, оказались вирусологическими. В медицине известно, что вирусы являются одной из причин внутриутробной патологии человека (вирус краснухи, гриппа, аденовирусы и др.). К сожалению, в ветеринарной вирусологии эта проблема не привлекла должного внимания. Хотя тератогенное действие вирусов наблюдается и в инфекционной патологии животных: вирус чумы свиней часто вызывает мертворождение и мумификацию плодов; вирус диареи крупного рогатого скота — гипоплазию мозжечка новорожденных телят; вирус инфекционного бронхита кур — патологическую форму яиц; вирус инфекционного ринотрахеита — пороки развития, слепоту у телят.

Установлена роль вирусов в возникновении некоторых хронических заболеваний. Накапливаются сведения о роли вирусов при острых сердечно-сосудистых заболеваниях, заболеваниях почек, поджелудочной железы, глаз и т. д. Только разносторонние исследования могут служить основой для суждения о роли вирусов в болезнях с неясной этиологией, которые до сих пор изучают врачи-неинфекционисты.

Очень важен как с эпидемиологической, так и эпизоотологической точки зрения факт миграции человеческих штаммов вируса гриппа в животный мир. Вирусы гриппа ускользают от действия иммунной системы организма за счет быстрого изменения своих антигенных детерминант. Это затрудняет проведение своевременных эффективных специфических методов профилактики. К сожалению, проблема гриппа до сих пор остается очень актуальной.

И наконец, накопились неоспоримые доказательства того, что многие опухолевые болезни вызывают вирусы (лейкоз птиц, крупного рогатого скота, болезнь Марека и др.). Выяснение причин возникновения злокачественных заболеваний человека, от которых во всем мире ежедневно погибают миллионы людей, остается одной из важнейших проблем современной биологии и медицины.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

  • 16137
  • 9,3
  • 2
  • 4

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма


Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).


Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].


Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).


Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.


Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.


Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.


Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.


Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.