Классификация рнк содержащих вирусов в ветеринарии

1. Сем. Reoviridae(реовирусы)

Это семейство вирусов вызывает поражение респираторного и пищеварительного тракта, что дало название семейству (Respiratory Enteric Orphans – сиротские вирусы респираторного и желудочно-кишечных трактов).

Вирусы содержат двунитчатую, фрагментированную на 10 фрагментов РНК. Вирусы семейства являются простоорганизованными, размером 60-80 нм. Кубический тип симметрии капсомеров, 92 капсомера. Вирусы обладают плюрализмом и гемагглютинирующими свойствами.

Примеры: вирус африканской чумы однокопытных, вирус синего языка овец, ротавирусные инфекции всех видов животных.

2. Сем. Retroviridae(ретровирусы)

Название семейства происходит от названия фермента обратная транскриптаза, который содержат представители семейства (англ. Reverse transcriptase)

Вирусы семейства содержат односпиральную, линейную РНК. Вирусы сложно организованы размером 80-100 нм. Спиральный тип симметрии капсида.

Вирус репродуцируется в ядре и цитоплазме. Пример: группа лейкозных вирусов.

3. Сем. Paramyxoviridae(парамиксовирусы)

Данное семейство получило название из-за преимущественной локализации вирусов на слизистых оболочках (myx – слизь, para - около).

Большая группа вирусов, поражающих респираторный аппарат и вызывающих генерализованные инфекции. Вирусы содержат односпиральную, линейную РНК. Вирус сложноорганизованный размером 120-300 нм. Спиральный тип симметрии капсида, 738 капсомеров. В капсиде имеется два главных белка – гемагглютинин и нейраминидаза.

Подсемейства Paramyxovirinae (3 рода) и Pneumovirinae (2 рода).

Пример: все вирусы парагриппа, вирус болезни Ньюкасла, вирус кори человека, вирус паротита человека, чума плотоядных.

4. Сем. Orthomyxovirus(ортомиксовирусы)

Вирусы данного семейства также, как и вирусы семейства Paramyxoviridae имеют преимущественную локализацию на слизистых оболочках, вызывая инфекции дыхательной системы.

Вирусы содержат односпиральную, фрагментированную на 8 фрагментов РНК. Вирусы сложноорганизованные размером 80-120 нм. Спиральный тип симметрии капсомеров. Репродуцируется в цитоплазме с образованием внутриклеточных включений. В оболочке имеется два белка– гемагглютинин и нейраминидаза.

Пример: вирусы гриппа человека и животных.

5. Сем. Rhabdoviridae(рабдовирусы)

Название семейства происходит от греческого слова rhabdos – стержень, так как отдельные представители семейства имеют характерную вытянутую форму.

Вирусы содержат односпиральную, линейную РНК. Это сложноорганизованные вирусы пулевидной формы, размером 45-100 нм, но может быть и больше. Обладают гемагглютинирующими свойствами.

Вирус бешенства, везикулярного стоматита.

6. Сем. Togaviridae(тогавирусы)

Название семейства происходит от латинского слова toga – плащ, так как все вирусы семейства покрыты оболочкой суперкапсида.

Вирусы содержат односпиральную, линейную РНК. Вирусы семейства являются простоорганизованными, размером 40-60 нм, имеют кубический тип симметрии, 32 капсомера.

Вирус энцефаломиелита лошадей, краснухи.

7. Сем. Flaviviridae(флавивирусы)

Данное название (лат. Flavus - желтый) семейство получило в связи с тем, что первым хорошо изученным вирусом явился возбудитель желтой лихорадки.

Характеристика семейства аналогична семейству Togaviridae

Вирус энцефаломиелита животных, классической чумы свиней.

8. Сем. Picornaviridae(пикорнавирусы)

Название семейства происходит от слов pico – маленький и rna – рибонуклеиновая кислота, что характеризует маленькие размеры вирусов семейства и содержание РНК в вирионе.

Вирусы содержат односпиральную, линейную РНК. Вирусы просто организованы, размером 20-30 нм. Кубический тип симметрии.

Вирус ящура, болезни Тешена.

9. Сем. Coronaviridae(коронавирусы)

Название семейства происходит от латинского слова corona в связи с наличием шипиков в виде короны на поверхности вириона.

Вирусы содержат односпиральную, линейную РНК. Сложная организация вирусов, их размер 50-220 нм. Спиральный тип симметрии капсида.

Вирус инфекционного гастроэнтерита свиней, инфекционного бронхита кур, коронавирус диареи новорожденных.

10. Сем. Arenaviridae(аренавирусы)

Название семейства происходит от латинского слова arena – песок в связи с наличием внутри зрелых вирионов электронноплотных гранул.

Вирусы содержат односпиральную, фрагментированную на два фрагмента РНК. Вирусы сложно организаваны со спиральным типом симметрии. Размер вирионов 110-130 нм

Вирус лимфоцитарного хореоменингита.

11. Сем. Bunyaviridae(буниавирусы)

Название семейства происходит от названия местности, где впервые был изолирован вирус (Уганда, Буньямвера, 1973). Это группа африканских вирусов.

Вирусы содержат однонитчатую, кольцевую, фрагментированную на три фрагмента РНК. Спиральный тип симметрии капсида, 80-120 нм. Вирусы содержат гемагглютинин, репродуцируются в цитоплазме.

Вирус лихорадки долины Рифт, болезни Найроби.

12. Сем. Caliciviridae(калицивирусы)

Название семейства происходит от латинского слова calix – чаша. Вирусы содержат односпиральную, линейную РНК. Кубический тип симметрии капсида, размер вируса 35-38 нм. Это простоорганизованные вирусы.

Вирус везикулярной экзантемы свиней, кошек.

3. Сем. Birnaviridae(бирнавирусы)

Данное название семейство получило название от слов bi – два и rna – рибонуклеиновая кислота, что характеризует наличие двунитчатой молекулы РНК в вирионе.

Вирусы содержат двуспиральную, линейную, фрагментированную на два фрагмента молекулу РНК. Простая организация вируса с кубическим типом симметрии, в капсиде имеется 92 капсомера, размер вируса около 60 нм.

Вирус инфекционного бурсита кур, некроза поджелудочной железы рыб.

14. Сем. Astroviridae(астровирусы)

Название семейства происходит от греческого слова astron- звезда из-за характерной формы вирионов в виде пяти и шестиконечной звезд.

Вирус обладает тропизмом к эпителию кишечника, поражая при этом широкий спектр хозяев.

Вирусы содержат односпиральную, линейную РНК. Вирус простой организации, размером 28-30 нм. Кубический тип симметрии, 7 капсомеров. Репродуцируется в цитоплазме клеток.

15. Сем. Filoviridae(филовирусы)

Вирус обладает тропизмом к клеткам иммунной системы, репродуцируется в цитоплазме. Вирусы содержат односпиральную, линейную РНК. Вирус сложноорганизованный, нитевидной формы, размер 80-970 нм имеет спиральный тип симметрии

Вирус болезни Марбурга, вирус Эбола.

16. Сем. Arteriviridae(артеривирусы)

Небольшая группа вирусов, поражающих позвоночных. Данное название семейство получило из-за болезни артериит лошадей, вызываемый представителем семейства.

РНК односпиральная, линейная, фрагментированная. Вирус простоорганизованный, размер 60 нм. Кубический тип симметрии.

Вирус респираторно-репродуктивного синдрома свиней, артериита лошадей.

17. Сем. Bornaviridae(борнавирусы)

Эта группа вирусов поражает лошадей и овец, возможно и человека.

Вирусы содержат односпиральную РНК. Вирус сложноорганизованный, размер 80-125 нм. Кубический тип симметрии. Для вирусов характерна длительная персистенция.

Вирус болезни Борна лошадей.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.



Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Суббота, 25.04.2020, 10:32

Роль вирусов в биосфере

Вирусы являются одной из самых распространённых форм существования органической материи на планете по численности: воды мирового океана содержат колоссальное количество бактериофагов (около 250 миллионов частиц на миллилитр воды), их общая численность в океане — около 4·10 30 , а численность вирусов (бактериофагов) в донных отложениях океана практически не зависит от глубины и всюду очень высока. В океане обитают сотни тысяч видов (штаммов) вирусов, подавляющее большинство которых не описаны и тем более не изучены. Вирусы играют важную роль в регуляции численности популяций живых организмов.

Положение вирусов в системе живого

Вирусы имеют генетические связи с представителями флоры и фауны Земли. Согласно последним исследованиям, геном человека более чем на 32 % состоит из информации, кодируемой вирус-подобными элементами и транспозонами. С помощью вирусов может происходить так называемый горизонтальный перенос генов (ксенология), то есть передача генетической информации не от отца к сыну и так далее, а между двумя неродственными (или даже относящимися к разным видам) особями. Так в геноме высших приматов существует белок синцитин , который, как считается, был привнесён ретровирусом. Иногда вирусы образуют с животными симбиоз. Так, например, яд некоторых паразитических ос содержит структуры, называемые поли-ДНК-вирусами (Polydnavirus, PDV), имеющие вирусное происхождение.

Вирусы — сборная группа, не имеющая общего предка. В настоящее время существует несколько гипотез, объясняющих происхождение вирусов.

Считается, что крупные ДНК-содержащие вирусы происходят от более сложных (и, возможно, клеточных, таких как современные микоплазмы и риккетсии), внутриклеточных паразитов, утративших значительную часть своего генома. И действительно, некоторые крупные ДНК-содержащие вирусы (мимивирус, вирус оспы) кодируют функционально избыточные, на первый взгляд, ферменты, по-видимому, оставшиеся им в наследство от более сложных форм существования. Следует также отметить, что некоторые вирусные белки не обнаруживают никакой гомологии с белками бактерий, архей и эукариот, что свидетельствует о сравнительно давнем обособлении этой группы.

ДНК-содержащие бактериофаги и некоторые ДНК-содержащие вирусы эукариот, возможно, происходят от мобильных элементов — участков ДНК, способных к самостоятельной репликации в клетке.

Вирусные частицы (вирио́ны) представляют собой белковую капсулу — капсид, содержащую геном вируса, представленный одной или несколькими молекулами ДНК или РНК. Капсид построен из капсомеров — белковых комплексов, состоящих, в свою очередь, из протомеров . Нуклеиновая кислота в комплексе с белками обозначается термином нуклеокапсид . Некоторые вирусы имеют также внешнюю липидную оболочку. Размеры различных вирусов колеблются от 20 (пикорнавирусы) до 500 (мимивирусы) и более нанометров. Вирионы часто имеют правильную геометрическую форму (икосаэдр, цилиндр). Такая структура капсида предусматривает идентичность связей между составляющими её белками, и, следовательно, может быть построена из стандартных белков одного или нескольких видов, что позволяет вирусу экономить место в геноме.

Условно процесс вирусного инфицирования в масштабах одной клетки можно разбить на несколько взаимоперекрывающихся этапов:

В таксономии живой природы вирусы выделяются в отдельный таксон Vira , образующий в классификации Systema Naturae 2000 вместе с доменами Bacteria , Archaea и Eukaryota корневой таксон Biota . В течение XX века в систематике выдвигались предложения о создании выделенного таксона для неклеточных форм жизни ( Aphanobionta Novak, 1930; надцарство Acytota Jeffrey, 1971; Acellularia ), однако такие предложения не были кодифицированы.

Систематику и таксономию вирусов кодифицирует и поддерживает Международный Комитет по Таксономии Вирусов (International Committee on Taxonomy of Viruses, ICTV), поддерживающий также и таксономическую базу The Universal Virus Database ICTVdB.

Международным Комитетом по Таксономии Вирусов в 1966 году была принята система классификации вирусов основанная на различии типа (РНК и ДНК), количества молекул нуклеотических кислот (одно- и двух-цепочечные) и на наличии или отсутствии оболочки ядра. Система классификации представляет собой серию иерархичных таксонов :

Нобелевский лауреат, биолог Дэвид Балтимор, предложил свою схему классификации вирусов, основываясь на различиях в механизме продукции мРНК. Эта система включает в себя семь основных групп:

  • (I) Вирусы, содержащие двуцепочечную ДНК и не имеющие РНК-стадии (например, герпесвирусы, поксвирусы, паповавирусы, мимивирус).
  • (II) Вирусы, содержащие двуцепочечную РНК (например, ротавирусы).
  • (III) Вирусы, содержащие одноцепочечную молекулу ДНК (например, парвовирусы).
  • (IV) Вирусы, содержащие одноцепочечную молекулу РНК положительной полярности (например, пикорнавирусы, флавивирусы).
  • (V) Вирусы, содержащие одноцепочечную молекулу РНК негативной или двойной полярности (например, ортомиксовирусы, филовирусы).
  • (VI) Вирусы, содержащие одноцепочечную молекулу РНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретровирусы (например, ВИЧ).
  • (VII) Вирусы, содержащие двуцепочечную ДНК и имеющие в своем жизненном цикле стадию синтеза ДНК на матрице РНК, ретроидные вирусы (например, вирус гепатита B).

В настоящее время, для классификации вирусов используются обе системы одновременно, как дополняющие друг друга.

Дальнейшее деление производится на основе таких признаков как структура генома (наличие сегментов, кольцевая или линейная молекула), генетическое сходство с другими вирусами, наличие липидной оболочки, таксономическая принадлежность организма-хозяина и так далее.

В 1901 г. было обнаружено первое вирусное заболевание человека - жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.

В 1911 г. Фрэнсис Раус доказал вирусную природу рака — саркомы Рауса (лишь в 1966 г, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).

В последующие годы изучение вирусов сыграло важнейшую роль в развитии эпидемиологии, иммунологии, молекулярной генетики и других разделов биологии. Так, эксперимент Херши-Чейз стал решающим доказательством роли ДНК в передаче наследственных свойств. В разные годы еще как минимум шесть Нобелевских премий по физиологии и медицине и три Нобелевских премии по химии были вручены за исследования, непосредственно связанные с изучением вирусов.

В 2002 году, в университете Нью-Йорка был создан первый синтетический вирус (вирус полиомиелита).

  • Генная инженерия
  • Нанотехнологии
  • Биологическое оружие

Одна из серьезных проблем, с которой сталкиваются разработки в области нанотехнологии, - это разброс размеров компонентов. Действительно, получить идентичные нанообъекты чрезвычайно сложно. Нанотрубки и нанопроволочки, предлагаемые в качестве элементов наноэлектронных приборов и устройств, несмотря на все усилия, имеют отличия по форме и/или размеру. Недавно был предложен новый подход к решению этой проблемы. Он заключается в использовании биологических объектов, имеющих заложенные природой строго определенные размеры и форму. К успеху привели вирусы, прекрасно работающие в качестве наноматриц для производства органических и неорганических наноматериалов или устройств.

Материал из Википедии — свободной энциклопедии

ВИРУСЫ (от лат. virus — яд), облигатные внутриклеточные паразиты, вызывающие инфекц. заболевания человека, позвоночных животных, членистоногих, гельминтов, бактерий, простейших, плесневых грибов, растений. В., поражающие бактерии, наз. бактериофагами. В. являются неклеточными формами жизни, обладающими собственным геномом и способными к воспроизведению лишь в клетках более высокоорганизованных организмов. Для В. характерны две формы существования; внеклеточная, или покоящаяся (вирионы, вироспоры, вирусная частица), и внутриклеточная, или размножающаяся, репродуцирующаяся (комплекс вирус — клетка”). Связь между этими формами существования В. осуществляется через нуклеиновую кислоту вириона (носитель генетич. информации), которая индуцирует в заражённой клетке вирусоспецифич. синтезы и образование дочерних вирионов. В. — паразиты на генетич. уровне, т. к. их взаимодействие с клеткой — это прежде всего взаимодействие вирусного и клеточного геномов, результатом чего может быть либо острая вирусная инфекция, иногда с цитоцидным эффектом, либо хронич. инфекция, которая в ряде случаев может приводить к клеточной трансформации. Внутриклеточный паразитизм В. обусловлен отсутствием у них собственных белоксинтезирующих систем. Для своего воспроизведения В. используют синтетич. аппарат клетки.

Различные виды В. на внеклеточной стадии существования характеризуются размерами от 15—18 до 300—350 нм. Наиболее крупные В. (возбудители оспы, осповакцины) различимы в световом микроскопе, но в основном В. можно увидеть лишь в электронном микроскопе.

Химический состав и структура вирусных частиц. Простые В. состоят только из белка и нуклеиновых кислот. У сложных, более крупных В., поражающих высших животных, наряду с этими компонентами содержатся липиды (в форме гликопротеидов) и белки-ферменты. В отличие от клеточных форм жизни, В. содержат в вирионе один из двух типов нуклеиновых кислот: РНК или ДНК. Нуклеиновые кислоты у В. представлены двухспиральной ДНК (В. оспы, герпеса) или односпиральной РНК (В. полиомиелита, ящура), однако существуют В. с односпиральной ДНК (парвовирусы) и В. двухспиралыюй РНК (реовирусы). Структура генома у многих В. изучена недостаточно. Установлено, что гены (определённое число нуклеотидов) расположены в нуклеиновой кислоте в определённой линейной последовательности, осн. их функция — программирование синтеза вирусоспецифических (функциональных и структурных) белков. Нуклеиновая кислота в вирусной частице окружена защитной белковой оболочкой (капсидом). Нуклеиновая кислота с капсидом наз. нуклеокапсидом. У просто организованных В. термины "нуклеокапсид" и "вирусная частица" (вирион) тождественны. У сложно устроенных В. наряду с капсидом имеется ещё одна или неск. внешних (белковых или липидных) оболочек (суперкапсид). Белковая оболочка В. построена из идентичных полипептидных цепей, уложенных в определённом порядке, обусловливающем тип симметрии (спиральный или кубический). Капсид предохраняет нуклеиновую кислоту В. от неблагоприятных воздействий внешней среды; обеспечивает адсорбцию В. на клетке хозяина благодаря сродству рецепторов, расположенных на поверхности капсида и клетки. С капсидом связаны также антигенные и иммуногенные свойства В. С помощью электронного микроскопа в капсиде выявляют комплексные группы его структурных единиц — капсомеры. Их число у различных В. колеблется от 12 до неск. сотен и более (рис.).

Размножение (репродукция) В. происходит в клетках хозяина и включает неск.стадий: адсорбцию и проникновение В. в клетку; синтез вирусоспецифич.ферментов — "ранних" белков, необходимых для воспроизведения (репликации) вирусной нуклеиновой кислоты; репликацию вирусной нуклеиновой кислоты; синтез информационных РНК (при репродукции ДНК-содержащих В.), кодирующих поздние белки, входящие в состав вирионов, а также формирование вирионов; освобождение дочерних вирусных частиц во внешнюю среду.

В. имеют или собственные вирусоспецифич. ферменты репликации, заключённые в структуре вириона, или ферменты, закодированные в вирусном геноме и появляющиеся в инфицированной клетке перед началом репликации вирусной ДНК или РНК. Напр., у В. оспы в составе вирионов имеются собств. высокоснецифич. транскриптазы; в составе онкорнавирусов содержится обратная транскриптаза. У аденовирусов репликация ДНК обеспечивается клеточными ферментами. В. могут репродуцироваться в организме естественно восприимчивых животных, куриных эмбрионах, культурах клеток и переживающих эксплантатах органов и тканей (В. не удаётся культивировать на искусств. питательных средах). Как в естеств., так и экспериментальных условиях спектр патогенности В. различен. Имеются В. полипатогенные, поражающие широкий круг животных (В. бешенства, болезни Ауески), и монопатогенные (В. чумы свиней, инфекц. ларинготрахеита кур и др.). Между этими представителями имеется обширная группа В. различных классов и семейств, обладающих разным спектром патогенности.

Классификация вирусов животных.

Вирусы, основные представители.

ДНК-содержащие.

Вирусы крыс, мышей, свиней, кошек, кр. рог. скота и др.

Аденоассоциированные вирусы типов 1, 2, 3, 4.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Кафедра биологии и экологии

студентка 4 курса 2 гр.

факультета физической культуры

Ларина Татьяна Викторовна

К.б.н., доцент Юдин Александр Николаевич

1. Значение вирусов для медицины

2. Вирусология в медицине

3. Значение вирусов в ветеринарии

4. Опухолеродные вирусы

Вирусы – это внеклеточная форма жизни, обладающая собственным геномом и способная к воспроизведению только в клетках живых организмов. Вирусы не имеют клеточного строения, белоксинтезирующей системы, содержат только один тип нуклеиновой кислоты. Различают ДНК- и РНК-содержащие вирусы.

Вирион (или вирусная частица) состоит из одной или нескольких молекул ДНК или РНК, заключенную в белковую оболочку (капсид), иногда содержащую также липидные и углеводные компоненты. Форма вирионов может быть различной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирус полиомиелита, ВИЧ), в виде сперматозоида (многие бактериофаги).

Вирусы подразделяются на просто устроенные (вирусы полиомиелита и др.) и сложно устроенные (вирусы гриппа, кори). У просто устроенных вирусов нуклеиновая кислота связана с капсидом, который состоит из субъединиц – капсомеров. У сложно устроенных вирусов капсид окружен дополнительной оболочкой – суперкапсидом, или пеплосом. Капсид и суперкапсид защищают вирионы от воздействия окружающей среды, обуславливают избирательную адсорбцию вируса на определенных клетках.

Внутренние структуры вирусов называются сердцевиной.

Вирусы размножаются только после инфицирования живых клеток. Различные вирусы проникают в растительные и животные клетки, а также бактерии. Вирусы являются внутриклеточными паразитами на генетическом уровне и используют для своего размножения белоксинтезирующий аппарат клетки-хозяина.

Вирусы обладают разной устойчивостью к внешним воздействиям. Многие инактивируются при 60 о С до 10 мин, другие выдерживают температуру 90 о С до 10 мин. Вирусы довольно легко переносят высушивание и низкие температуры, но мало устойчивы ко многим антисептикам, ультрафиолетовым лучам, радиоактивным излучениям.

Вирусы поражают позвоночных и беспозвоночных животных, растения и бактерии. Они являются основными возбудителями многих опасных заболеваний человека, а также участвуют в процессах канцерогенеза.

1. Значение вирусов для медицины

Более десяти групп вирусов патогенны для человека. Среди них имеются как ДНК-вирусы (вирус оспы, группа герпеса, аденовирусы (заболевания дыхательных путей и глаз), паповавирусы (бородавки), гепаднавирусы (гепатит В)), так и РНК-вирусы (пикорнавирусы (гепатит А, полиомиелит, ОРЗ), миксовирусы (грипп, корь, свинка), арбовирусы (энцефалит, желтая лихорадка)). К вирусным заболеваниям относится и обнаруженный в 1981 году вирус иммунодефицита человека, вызывающий СПИД.

Из-за высокой мутабельности лечение вирусных заболеваний довольно сложно. Гораздо успешнее применять вакцинацию, заключающуюся во введении аттенуированных (ослабленных) микроорганизмов или умеренных (близкородственных, но не патогенных) штаммов. В 1796 году Эдуард Дженнер изобрел оспопрививание (сейчас вирус оспы остался только в нескольких научных лабораториях), а в 1885 году Луи Пастер сделал первую прививку от бешенства, также практикуют пассивную иммунизацию, то есть введение готовых антител из крови животных. Борьба с вирусными заболеваниями человека и животных ведется также с использованием неспецифических препаратов (например, интерферона), специфических сывороток и препаратов, подавляющих репродукцию вирусов.

Попытки использовать вирусы на пользу человечеству довольно немногочисленны. Так, в середине ХХ века вирус кроличьего миксоматоза использовали в Австралии, чтобы уменьшить поголовье этих чрезвычайно расплодившихся животных.

Вирусы широко используются как объекты молекулярно-генетических исследований. В генной инженерии вирусы применяются для переноса генетического материала.

Благодаря успехам генетики в будущем, возможно, искусственные вирусы смогут уничтожать больные клетки, не затрагивая при этом здоровые, или излечивать их, добавляя необходимый ген.

Некоторые вирусы могут нарушать нормальное функционирование генетического аппарата клетки хозяина, что приводит к развитию онкологических заболеваний.

2. Вирусология в медицине

Вирусология — наука о вирусах. Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику. Медицинская, ветеринарная и сельскохозяйственная вирусология исследует патогенные вирусы, их инфекционные свойства, разрабатывает меры предупреждения, диагностики и лечения вызываемых ими заболеваний. Раздел вирусологии, изучающий наследственные свойства вирусов, тесно связан с молекулярной генетикой.

В методическом отношении вирусология существенно отличается от микробиологии, так как вирусы не удается культивировать на искусственных питательных средах. Для опытов с вирусами приходится использовать чувствительных к ним животных и растения, куриные эмбрионы (1932) и изолированные ткани. Успехи вирусологии зависели от разработки удобного метода культивирования вирусов. Изучение вируса гриппа продвинулось вперёд, когда определили, что к этому вирусу чувствительны хорьки (1933) и белые мыши (1934). В изучении вирусов полиомиелита и кори, а также в создании предохранительных вакцин против этих болезней решающее значение имело культивирование вирусов в изолированных тканях обезьян и человека.

Для количественного учета вируса и динамики его размножения применяют различные методы титрования. Эти методы основаны на том, что вирус, размножаясь в клетках, вызывает видимые поражения. Бактериальные вирусы (бактериофаги) титруют по числу стерильных пятен (Ф. Д'Эрелль, 1917), вирусы животных и человека — на однослойных культурах тканей (Р. Дульбекко, 1952). Создание ультрацентрифуг облегчило концентрацию вирусов и определение массы вирусных частиц. Градиентное (фракционированное) центрифугирование в растворах сахарозы или солей металлов дало возможность рассортировать вирусные частицы, так как даже при незначительном различии их веса они распределяются слоями на разных уровнях раствора. Этот метод сыграл большую роль в изучении стадий размножения вирусов.

3. Значение вирусов в ветеринарии

Вирусы культивируют на биологических моделях: в организме лабораторных животных, в развивающихся куриных эмбрионах и культурах клеток (тканей).

Лабораторных животных (взрослых и новорожденных белых мышей, хомяков, кроликов, обезьян и др.) заражают исследуемым вирусосодержащим материалом. Обнаружение факта размножение вирусов устанавливают на основании развития типичных признаков заболевания, патоморфологических изменений органов и тканей животных или положительной реакции гемагглютинации (РГА). РГА основана на способности некоторых вирусов вызывать агглютинацию (склеивание) эритроцитов различных видов животных, птиц и человека за счет имеющегося на поверхности вириона особого белка гемагглютинина. Использование животных для культивирования вирусов в диагностических целях в настоящее время весьма ограничено.

ВИРУСЫ (от лат. virus — яд), облигатные внутриклеточные паразиты, вызывающие инфекц. заболевания человека, позвоночных животных, членистоногих, гельминтов, бактерий, простейших, плесневых грибов, растений. В., поражающие бактерии, наз. бактериофагами . В. являются неклеточными формами жизни, обладающими собственным геномом и способными к воспроизведению лишь в клетках более высокоорганизованных организмов. Для В. характерны две формы существования; внеклеточная, или покоящаяся (вирионы, вироспоры, вирусная частица), и внутриклеточная, или размножающаяся, репродуцирующаяся (комплекс вирус — клетка”). Связь между этими формами существования В. осуществляется через нуклеиновую к-ту вириона (носитель генетич. информации), к-рая индуцирует в заражённой [зараженной] клетке вирусоспецифич. синтезы и образование дочерних вирионов. В.— паразиты на генетич. уровне, т. к. их взаимодействие с клеткой — это прежде всего взаимодействие вирусного и клеточного геномов, результатом чего может быть либо острая вирусная инфекция, иногда с цитоцидным эффектом, либо хронич. инфекция, к-рая в ряде случаев может приводить к клеточной трансформации. Внутриклеточный паразитизм В. обусловлен отсутствием у них собственных белоксинтезирующих систем. Для своего воспроизведения В. используют синтетич. аппарат клетки.

Различные виды В. на внеклеточной стадии существования характеризуются размерами от 15—18 до 300—350 нм. Наиболее крупные В. (возбудители оспы, осповакцины) различимы в световом микроскопе, но в основном В. можно увидеть лишь в электронном микроскопе.

Химический состав и структура вирусных частиц. Простые В. состоят только из белка и нуклеиновых к-т. У сложных, более крупных В., поражающих высших животных, наряду с этими компонентами содержатся липиды (в форме гликопротеидов) и белки-ферменты. В отличие от клеточных форм жизни, В. содержат в вирионе один из двух типов нуклеиновых к-т: РНК или ДНК. Нуклеиновые к-ты у В. представлены двухспиральной ДНК (В. оспы, герпеса) или односпиральной РНК (В. полиомиелита, ящура), однако существуют В. с односпиральной ДНК (парвовирусы) и В. двухспиралыюй РНК (реовирусы). Структура генома у многих В. изучена недостаточно. Установлено, что гены (определённое [определенное] число нуклеотидов) расположены в нуклеиновой к-те в определённой [определенной] линейной последовательности, осн. их функция — программирование синтеза вирусоспецифических (функциональных и структурных) белков. Нуклеиновая к-та в вирусной частице окружена защитной белковой оболочкой (капсидом). Нуклеиновая к-та с капсидом наз. нуклеокапсидом. У просто организованных В. термины “нуклеокапсид” и “вирусная частица” (вирион) тождественны. У сложно устроенных В. наряду с капсидом имеется ещё [еще] одна или неск. внешних (белковых или липидных) оболочек (суперкапсид). Белковая оболочка В. построена из идентичных полипептидных цепей, уложенных в определённом [определенном] порядке, обусловливающем тип симметрии (спиральный или кубический). Капсид предохраняет нуклеиновую к-ту В. от неблагоприятных воздействий внешней среды; обеспечивает адсорбцию В. на клетке хозяина благодаря сродству рецепторов, расположенных на поверхности капсида и клетки. С капсидом связаны также антигенные и иммуногенные свойства В. С помощью электронного микроскопа в капсиде выявляют комплексные группы его структурных единиц — капсомеры. Их число у различных В. колеблется от 12 до неск. сотен и более (рис.).

Размножение (репродукция) В. происходит в клетках хозяина и включает неск.стадий: адсорбцию и проникновение В. в клетку; синтез вирусоспецифич.ферментов — “ранних” белков, необходимых для воспроизведения (репликации) вирусной нуклеиновой к-ты; репликацию вирусной нуклеиновой к-ты; синтез информационных РНК (при репродукции ДНК-содержащих В.), кодирующих поздние белки, входящие в состав вирионов, а также формирование вирионов; освобождение дочерних вирусных частиц во внешнюю среду.

В. имеют или собственные вирусоспецифич. ферменты репликации, заключённые [заключенные] в структуре вириона, или ферменты, закодированные в вирусном геноме и появляющиеся в инфицированной клетке перед началом репликации вирусной ДНК или РНК. Напр., у В. оспы в составе вирионов имеются собств. высокоснецифич. транскриптазы; в составе онкорнавирусов содержится обратная транскриптаза. У аденовирусов репликация ДНК обеспечивается клеточными ферментами. В. могут репродуцироваться в организме естественно восприимчивых животных, куриных эмбрионах, культурах клеток и переживающих эксплантатах органов и тканей (В. не удаётся [удается] культивировать на искусств. питательных средах). Как в естеств., так и экспериментальных условиях спектр патогенности В. различен. Имеются В. полипатогенные, поражающие широкий круг животных (В. бешенства, болезни Ауески), и монопатогенные (В. чумы свиней, инфекц. ларинготрахеита кур и др.). Между этими представителями имеется обширная группа В. различных классов и семейств, обладающих разным спектром патогенности.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.