Инвазия вируса в клетку



Почему дети болеют меньше? Формируется ли иммунитет к коронавирусу? Главный инфекционист Минздрава Елена Малинникова ответила на вопросы, которые больше всего волнуют читателей.

— Насколько устойчив новый коронавирус во внешней среде?

— Устойчивость вируса оценивается. При передаче от человека к человеку любой вирус может приобретать активность или угасать. В принципе, по своей структуре новый коронавирус не очень устойчив, он сохраняется в окружающей среде в условиях от 7 до 7,5 PH. Если среда чуть кислее или чуть щелочнее, он не будет сохраняться. Плюс вирус прекрасно уничтожается дезсредствами. Через 10 мин его убивает ультрафиолетовое облучение. Но остается достаточно серьезная проблема в том, что вирус может хорошо сохраняться на поверхностях, если, скажем, это бумага, картон, пластик. Сколько времени он сохраняется? По разным данным, до 7-9 или 12 часов. Но это только при определенной температуре и влажности.


— Точно ли дети меньше болеют?

— Вирусы, которые вызывают ОРВИ, имеют определенную специфику. Попадая в организм человека, они не могут просто так поражать какие-то клетки. Коронавирусы, как и вирусы гриппа, поражают исключительно клетки эпителия верхних дыхательных путей, легких, кишечника, которые имеют к ним особые рецепторы. И это свойство вирус и приобрел, когда появился в человеческой популяции, преодолев межвидовой барьер.

Сейчас трудно сказать, сколько животных прошел вирус до человека. Но преодолеть межвидовой барьер вирусу очень сложно. Это долгий процесс — найти ту клеточку, куда он может прикрепиться у человека. Скорее всего, эта инфекция начала циркулировать в КНР не в декабре 2019 года. А вирус появился чуть раньше. И только в декабре китайские коллеги заявили о первом 41 больном. А с 13 января он стал циркулировать за территорией КНР.


Однако постоянно появляются новые данные о возможностях вируса. Поначалу считалось, что вирус передается только от одного человека к другому, а от него дальше, к третьему, четвертому пятому, — нет. Сейчас это тоже проверяется. Важно понимать: когда вирус находит свою популяцию, где он будет циркулировать, вирулентность, то есть токсичность, заразность его падает. Так что новый коронавирус просто занял свою нишу среди других вирусов, циркулирующих в человеческой популяции. Вообще же более 200 вирусов вызывают ОРВИ.

— Насколько эффективен карантин? Некоторые говорят, что он бесполезен.

— Наша задача — не допустить тяжелых и летальных исходов от инфекции. Для этого необходимо, чтобы люди из группы риска, которые дают такие тяжелые реакции, не имели тесного контакта с людьми, которые способны перенести инфекцию на ногах либо не болеть вообще. Задача карантина — разобщение. Это на сегодня лучшее средство профилактики. Если мы не будем распространять инфекцию в популяции, заболеваемость пойдет не по критической линии, а плавно охватит определенный контингент населения, плавно иммунизирует популяцию. Да, потом мы будем встречаться с этой инфекцией. Но будет ли вирус так активен, как его брат SARS или как MERS, которые мы периодически диагностируем, но немного? И насколько он останется активным на следующий сезон? Пока вопросы остаются.

Мы никогда не заражаемся одним вирусом. Мы заражаемся облаком разнообразных вирусов. Как они себя поведут, зависит от организма. Зависит и от того, какое количество вируса попало в организм. Рискуют больше всего пожилые люди с сердечно-сосудистыми заболеваниями и дыхательными.


— Формируется ли иммунитет к коронавирусу?

— Это называется проэпидемичивание населения. Когда появились первые выздоровевшие, стали говорить, что иммунитет после перенесенной инфекции нестоек. Сейчас мы наблюдаем циркуляцию двух вариантов вируса — S-варианта и L-варианта. Возможно, они не дают перекрестного иммунитета. Когда закончится эпидемия, вирус пройдет через человеческую популяцию, мы сможем сказать, насколько он формирует ответ иммунитета, а также уточнить показатели летальности. Сейчас смертность в среднем 3,9%, а среди пожилых достигает 20%.

В Китае эпидемия продлилась примерно сто дней. Но этот прогноз нельзя распространять на другие страны. Вообще мы не может сказать, как быстро распространяется инфекция. Те беспрецедентные меры профилактики, которые применили в КНР, не дали понимания, как эпидемия могла бы развиваться в обычных условиях. И как неожиданно инфекция стала развиваться в индустриально развитых странах. Мы не видим развития инфекции в странах, где даже, условно, хлорирование воды не практикуется. У нас в советские годы была система тотального противоэпидемического контроля. В Италии такого тотального контроля нет. Плюс туда стекается много туристических путей. Все это сыграло роль в росте заболеваемости. Но это все предварительные выводы. Многие иностранные коллеги хотят, чтобы мы поделились опытом, как мы справляемся с этой инфекцией.


— Раньше диагноз ставили после третьего теста на вирус. Сейчас говорят, что достаточно одной.

Помимо отмеченного свойства различных вирусов присоединяться к одному типу рецептора, выявлена способность одного и того же вируса связываться с различными рецепторами. Так, аденовирусы присоединяются к рецепторам иммуноглобулинового семейства и интегринам (аvβ3 и аvβ5), вирус кори - к рецепторам CD46 и вирус Коксаки - к β2 -микроглобулинам и аvβ3 -интегринам. В процессе проникновения в клетку последнего вируса, относящегося к группе вирусов без наличия суперкапсида - "неодетым", его нуклеокапсид икосаэдрального типа претерпевает конформационные изменения. Посредством каньонов на поверхности вируса, которые образуются в результате таких преобразований, происходит его связывание с рецептором клетки, общим для аденовирусов и вируса Коксаки - CAR (Coxsackie virus-adenovirus receptor), являющимся трансмембранным протеином иммуноглобулинового семейства с двумя внеклеточными доменами молекулярной массой 46 кДа. Интересно, что некоторые штаммы вируса Коксаки В могут использовать для присоединения также рецептор CD55 (рецептор для фактора, усиливающего разрушение - decay-accelerating factor, DAF), который необходим как корецептор семейства интегринов для успешного входа этих вирусов в клетки.

Полиовирус, который также относится к "неодетым" вирусам, связывается со специфическим для него рецептором, названным полиовирусным (hPVR, CD155). Этот рецептор принадлежит к семейству рецепторов, содержащих иммуноглобулиновые внеклеточные домены и экспрессируется в четырех объединенных вариантах α, β, γ и σ. Места, посредством которых этот вирус связывается с клеточными рецепторами, находятся в каньонах нуклеокапсида. У человека, белки полиовирусного рецептора экспрессированы на многих клетках и тканях, включая тонкий кишечник, легкие, печень, сердце, нейроны и мышцы. Указывается, что чувствительность к поливирусной инфекции положительных по наличию этого рецептора мононуклеарных клеток крови может играть важную роль в инвазии вируса в центральную нервную систему. Полиовирусный рецептор также может использоваться для присоединения и других вирусов; таких как, например, вируса α герпеса. В свою очередь, разрушение рецептора либо подавление его функциональной активности приводит к нарушению или даже прекращению адсорбции вируса; что представляет интерес для исследователей, занимающихся вопросами разработки различных фармакологических препаратов.

3. Непосредственное перемещение вируса в клеточной мембране

После адгезии вируса на поверхности клетки начинается процесс перемещения его генома и сопутствующих белков через клеточную мембрану в цитоплазму. Исторически сложилось представление о двух альтернативных механизмах проникновения в клетку вирусов животных — путем виропексиса (эндоцитоза) и путем слияния вирусной и клеточной мембран. Однако оба эти механизма не исключают, а дополняют друг друга.

Виропексис представляет собой частный случай рецепторного или адсорбционного эндоцитоза. Этот процесс является обычным механизмом, благодаря которому в клетку поступают питательные и регуляторные белки, гормоны, липопротеины и другие вещества из внеклеточной жидкости. Рецепторный эндоцитоз происходит в специализированных участках плазматической мембраны, где имеются специальные ямки, покрытые со стороны цитоплазмы особым белком с большой молекулярной массой — клатрином. На дне ямки располагаются специфические рецепторы. Ямки обеспечивают быструю инвагинацию и образование покрытых клатрином внутриклеточных вакуолей. Полупериод проникновения вещества внутрь клетки по этому механизму не превышает 10 мин с момента адсорбции. Количество образующихся в одну минуту вакуолей достигает более 2000. Таким образом, рецепторный эндоцитоз представляет собой хорошо слаженный механизм, который обеспечивает быстрое проникновение в клетку чужеродных веществ.

Покрытые вакуоли сливаются с другими, более крупными цитоплазматическими вакуолями, образуя рецептосомы, содержащие рецепторы, но не содержащие клатрин, а те в свою очередь сливаются с лизосомами. Таким путем проникшие в клетку белки обычно транспортируются в лизосомы, где происходит их распад на аминокислоты; они могут и миновать лизосомы, и накапливаться в других участках клетки в недеградированной форме. Альтернативой рецепторного эндоцитоза является жидкостный эндоцитоз (пиноцитоз), когда инвагинация происходит не в специализированных участках мембраны.

Большинство вирусов животных (с суперкапсидом и без него) проникает в клетку по механизму рецепторного эндоцитоза. Эндоцитоз обеспечивает внутриклеточный транспорт вирусной частицы в составе эндоцитарной вакуоли, поскольку вакуоль может двигаться в любом направлении и сливаться с клеточными мембранами (включая ядерную мембрану), освобождая вирусную частицу в соответствующих внутриклеточных участках. Таким путем, например, ядерные вирусы попадают в ядро, а реовирусы — в лизосомы. Однако проникшие в клетку вирусные частицы находятся в составе вакуоли и отделены от цитоплазмы ее стенками. Им предстоит пройти ряд этапов, прежде чем они смогут вызвать инфекционный процесс.

Слияние вирусной и клеточной мембран.

Для того чтобы внутренний компонент вируса мог пройти через клеточную мембрану, вирус использует механизм слияния мембран. У вирусов, имеющих суперкапсид, слияние обусловлено точечным взаимодействием вирусного белка слияния с липидами клеточной мембраны, в результате которого вирусная липопротеидная оболочка интегрирует с клеточной мембраной, а внутренний компонент вируса оказывается по другую ее сторону. У вирусов, не имеющих суперкапсид, один из поверхностных белков также взаимодействует с липидами клеточных мембран, в результате чего внутренний компонент проходит через мембрану. Большинство вирусов животных выходит в цитозоль из рецептосомы.

Общая схема проникновения вирусов с суперкапсидом в клетку:

Слева — эндоцитоз и слияние в эндосоме: 1 — вирус, 2 — эндосома, 3 — ядро; справа— слияние с плазматической мембраной.

С позиций современной вирусной цитопатологии, классификация механизмов проникновения вирусов через плaзматическую мембрану пересмотрена в соответствии с открытием новых порталов для попадания питательных веществ в клетку. На данный момент выделяют пять регулируемых порталов: фагоцитоз, пиноцитоз, подразделяемый на макропиноцитоз и различные типы эндоцитоза - клатрин-опосредованный (размер образованной вакуоли

120 нм), кавеолин-опосредованный (

60 нм), кавеолин- и клатрин-независимый эндоцитоз (

90 нм). Для вирусов присущи все вышеозначенные пути проникновения, поэтому необходимо более точное описание указанных порталов.

· Фагоцитоз у млекопитающих характерен для специализированных клеток моноцитов, макрофагов и нейтрофилов - и в этот процесс вовлекаются специфические рецепторы и последующий сигнальный каскад опосредуется определенными семействами ферментов - гуанинтрифосфатаз (ГТФазы). Данные ферменты играют ключевую роль для классификации порталов питательных веществ в клетки млекопитающих. Это большая группа ферментов, которые участвуют в связывании гуанинтрифосфатов и подвергаются конформационным изменениям при гидролизе гуанинтрифосфата в гуаниндифосфат в присутствии ионов Mg 2+ . Наибольший интерес представляет семейство мономерных ГТФаз сигнальной каскадной трансдукции и движения (signal transduction cascades and motility, Ras), которые по химической структуре подразделяют на девять групп: Rho (А, В, С изоформы фермента), Rac (1, 2, 3 изоформы), Rab, Cdc42 (G25K, Cdc42Hs изоформы), RhoD, RhoG, TC10, Rnd (Rndl, RhoE/Rnd3, Rnd6) иTTF. Причем каждая группа участвует в определенных функциях клетки. Так, при фагоцитозе активируется Rhо-грyппа ГТФаз, связанная с актиновыми структурами цитоскелета, а ее инициация происходит при стимуляции рецепторов плазмалеммы. Rab-грyппа участвует в перемещении уже сформированных везикул в цитоплазме клеток. Таким образом, при фагоцитозе необходима стимуляция рецепторов клетки, после чего активируется Rhо-группа ГТФаз, приводящая в движение актиновые структуры цитоскелета.

· В сигнальный каскадный макропиноцитоз также вовлекается Rhо-группа ГТФаз, которая запускает актин-зависимое формирование выступов мембраны. В отличие от фагоцитоза выступы плазмалеммы не соединяются по принципу "молнии" с лигандами поверхности поглощенной частицы, а формируют большую эндоцитарную вакуоль. Мембрана этой вакуоли не связана с поверхностью поглощаемых частиц.

· Кавеолин-опосредованный эндоцитоз характеризуется образованием кавеол, которые формируются на специфичных участках плазмалеммы, где сконцентрированы разнообразные сигнальные молекулы, а также молекулы, ответственные за транспорт в плазмалемме клеток. Формирование этих структур связано с определенными липидными участками плазмалеммы в жидкой фазе, обогащенными холестеролом и ориентированными во внутрь мембраны сфингомиелинами и гликосфинголипидами. После интеграции белка кавеолина 1 с этим участком плазмалеммы, происходит инвагинация последней в форме небольшой фляжки, которая называется кавеолой. Кавеолин 1 - это мономер, который при стимуляции собирается в дискретный гомо-олигомер, включающий 14-16 кавеолиновых молекул. Смежные гомо-олигомеры упаковываются в пределах мембраны кавеолы, тем самым, обеспечивая структурную сеть для ее дальнейшего формирования. Причем поглощенный материал химически связан с рецепторами мембраны клетки.

— Вирусная или бактериальная инфекция — чем они различаются? Как понять, какую подхватил?

— Как отличить вирусную инфекцию от бактериальной? Прежде всего обратите внимание на то, есть ли у вас болезненные ощущения в носоглотке, как изменяется температура тела. Если горло сильно болит, першит, резкого повышения температуры нет — значит, вы имеете дело с бактериальным заражением. А вот высокая температура тела (выше 39 градусов) без признаков чёткой локализации боли — факт встречи с вирусами. Это два основных признака, по которым можно отличить природу возбудителей.

Следует сказать, что при вирусной инфекции дебют заболевания скоротечен и не имеет видимой причины, отмечается выраженная общая интоксикация. Это и боль позади глазных яблок, и боль в мышцах при движении. Если говорить об отделяемом из верхних дыхательных путей, то при вирусной инфекции они (выделения. — RT) прозрачны, при бактериальной — жёлто-зелёные. Обратите внимание на сухой кашель! Но даже если вы считаете, что самостоятельно распознали причину недуга, вызовите врача на дом!

— Чем так опасен новый коронавирус в сравнении с теми вирусами, о которых мы уже наслышаны?

— Новая коронавирусная инфекция относится к острым респираторным вирусным инфекциям (ОРВИ), и осложнения у неё могут быть такие же, как и у других ОРВИ: пневмония, бронхит, синусит и другие. Опасность этого вируса в том, что он легко передаётся от человека к человеку. Особому риску подвержены пожилые люди.

— Какой у него принцип действия? Как влияет на организм?

Это усложняет распознавание вируса системой иммунитета. Так начинается разрушительная работа вируса в организме. Самой опасной точкой повреждения является система органов дыхания.

— Пара вопросов о профилактике. Кто-то говорит пить витамин С, кто-то — парацетамол. Кого слушать и слушать ли вообще?

— Ответ очень простой: слушать только вашего лечащего врача! Отдельно — о парацетамоле. Известен целый ряд случаев его бесконтрольного применения. А непреднамеренная передозировка парацетамола ведёт к отравлению, сопровождающемуся тяжёлым поражением печени. Крайне не рекомендуется принимать этот препарат с алкоголем! Итак, главный помощник — ваш лечащий доктор!

— Первое — чистота рук и окружающих поверхностей. Часто мойте руки водой с мылом и используйте дезинфицирующие средства.

Потрудитесь не касаться рта, носа и глаз руками (такие прикосновения неосознанно свершаются человеком более 15 раз в час).

Носите с собой дезинфицирующее средство для рук, чтобы в любой обстановке вы могли им воспользоваться.

Обязательно мойте руки перед едой.

Будьте особенно осторожны, когда находитесь в людных местах. Максимально сократите прикосновения к находящимся в таких местах поверхностям и предметам и не касайтесь лица.

Носите с собой одноразовые салфетки и всегда прикрывайте нос и рот, когда вы кашляете или чихаете, обязательно утилизируйте их после использования.

Не ешьте еду (орешки, чипсы, печенье и другие снеки) из общих упаковок или посуды, если другие люди погружали в них свои пальцы.

Избегайте приветственных рукопожатий и поцелуев.

Регулярно очищайте поверхности и устройства, к которым вы прикасаетесь: клавиатуру компьютера, панели оргтехники для общего использования, экран смартфона, пульты, дверные ручки и поручни.

Помните, почему предметы личной гигиены так называются!

— Рассмотрим пример: человек приехал из-за границы с кашлем и решил самоизолироваться. Врача не вызывает, думает, что это обычный ОРВИ или грипп, сейчас полечится — и пройдёт. Это рабочая схема, как думаете?

— Стоит ли вообще заниматься самолечением без диагноза? Какой порядок действий порекомендуете для тех, кто заболел?

— При подозрении на коронавирусную инфекцию самолечение абсолютно противопоказано. Не выходите из дома. Вызовите врача.

— Мыть руки — казалось бы, суперпросто, но об этом так часто сейчас говорят, как будто до этого вообще не мыли. Какие ещё полезные привычки посоветуете ввести в обиход?

— Мыть руки нужно правильно! То есть часто мыть руки с мылом (не менее минуты), причём не только ладони, но и тыльную их сторону, между пальцами, под ногтями. При этом очень важно их хорошо высушивать одноразовыми полотенцами, так как вирус на влажных руках также может сохраняться.

Обрабатывайте доступные поверхности общепринятыми дезинфицирующими средствами.

Используйте домашние ультрафиолетовые облучатели-рециркуляторы и кварцевые лампы.

Часто проветривайте помещение, где вы находитесь.

И самое главное: не паниковать! Инфекция не любит паники. Страх — первый помощник врага, и на всякую беду страха не напасёшься.

Лекция 8

Патогенез вирусных инфекций

Модуль 3

Комплексная цель модуля

Комплексная цель модуля состоит в необходимости объединить лекционный материал, касающийся всех возможных проявлений вируса на клеточном и организменном уровне, продемонстрировать единую систему протекания вирусной инфекции при заражении организма-хозяина. В задачу лекционного материала, объединенного в данный модуль входит необходимость обобщить информацию о классификации вирусных инфекций, о вирусном патогенезе на клеточном и организменном уровне, о цитопатическом эффекте вирусного поражения, а также путях проникновения и распространения вирусов в организме хозяина.

Модуль состоит из двух лекций, материал которых позволяет решить поставленную цель.

Под инфекцией понимают комплекс процессов, про­исходящих при взаимодействии инфекционного агента с организмом хозяина. Однако в связи с тем, что вирусы являются внутриклеточными паразитами, а точнее, генетическими паразитами, в основе их взаимодействия с организмом всегда лежит инфекционный процесс на уровне клетки, который реализуется путем взаимодействия вирус­ного и клеточного геномов. Поэтому возможно классифи­цировать инфекции как на клеточном уровне, так и на уровне организма

КЛАССИФИКАЦИЯ ВИРУСНЫХ ИНФЕКЦИЙ НА КЛЕТОЧНОМ УРОВНЕ

Автономные и интеграционные инфекции. Если вирус­ный геном реплицируется независимо от клеточного гено­ма, такая инфекция называется автономной. Понятие автономии относительно, оно ограничивается лишь отсут­ствием физической связи между вирусным и клеточным геномами, хотя взаимодействие их постоянно происходит в течение инфекции. Автономная форма вирусной инфек­ции характерна для большинства вирусов животных.

Если вирусный геном включается в состав клеточного генома, или, как принято называть этот процесс, интегри­рует с клеточным геномом и реплицируется вместе с ним, такая инфекция называется интеграционной. Интеграцион­ная инфекция возникает в результате физического объе­динения генома вируса и клетки. При этой форме инфек­ции вирусный геном реплицируется и функционирует как составная часть клеточного генома. Интегрировать могут как полный геном, так и часть генома. При гепатите В

возможна интеграция полного генома, при аденовирусных и герпесвирусных инфекциях обычно интегрирует часть генома, при инфекции онковирусами может интегрировать как полный геном, так и часть его. Вирусные последова­тельности в составе клеточного генома называются провирусом, или провирусной ДНК.

При интеграционных инфекциях нет ни сборки вирус­ной частицы, ни выхода вируса из клетки. Клетка может сохранить нормальные функции и при ее делении вирус­ные последовательности могут переходить в геном дочер­них клеток. Такая ситуация наблюдается в случае ин­фекции, вызванной онкогенными вирусами. Интеграция может привести к неопластической трансформации клет­ки. Трансформированная клетка приобретает способность к неограниченному делению в результате нарушения регуляторных механизмов, контролирующих деление. Ин­теграционный тип инфекции возможен для нескольких семейств ДНК-содержащих вирусов: аденовирусов, паповавирусов, вирусов герпеса, а также для вируса гепатита В и обязателен для одного семейства РНК-содержащих вирусов — ретровирусов. В соответствии с данными В. М. Жданова, интеграционная форма инфекции может возникнуть при заражении и другими РНК-содержащими вирусами, такими, как вирус клещевого энцефалита (семейство тогавирусов), вирусы кори и SV5 (семейство парамиксовирусов) и др. Обязательным условием в этом случае является присутствие в клетках фермента — обратной транскриптазы, необходимого для процесса интеграции. Возникающая интеграционная инфекция может явиться причиной ряда хронических и аутоиммунных за­болеваний.

Механизм интеграции вирусного генома с клеточным геномом. Из многих моделей, объяс­няющих процесс интеграции, наиболее признанной являет­ся модель Кемпбелла. В соответствии с этой моделью для интеграции с клеточным геномом необходима кольце­вая форма двунитчатой вирусной ДНК. Эта молекула ДНК прикрепляется к клеточной ДНК, в месте прикрепления обе молекулы разрезаются и образовавшиеся концы сшиваются таким образом, что вирусная ДНК становится ча­стью клеточного генома. Существенную роль в интеграции играют длинные концевые повторы двунитча­той ДНК, которые определяют специфичность интеграции в результате узнавания ими определенных участков кле­точного генома. ДНК паповавирусов является циркулярной и двунитчатой и полностью отвечает требованиям модели Кемпбелла.

Продуктивная и абортивная инфекции. Инфекция мо­жет быть продуктивной и абортивной. Продуктивная ин­фекция завершается образованием инфекционного потом­ства. Абортивной называется инфекция, которая не за­вершается образованием инфекционных вирусных частиц, или они образуются в гораздо меньшем количестве, чем при продуктивной инфекции. Абортивная инфекция может возникнуть при следующих трех обстоятельствах: 1) зара­жение чувствительных клеток дефектным вирусом; 2) за­ражение чувствительных клеток в неразрешающих услови­ях; 3) заражение нечувствительных клеток стандартным вирусом.

Заражение чувствительных клеток де­фектным вирусом. Дефектным называется такой ви­рус, который не способен проявить все генетические функции, необходимые для образования инфекционного потомства.

Существуют дефектные вирусы и дефектные вирусные частицы. Дефектными называются такие вирусы, которые репродуцируются лишь в присутствии вируса-помощника, например аденоассоциированный вирус (семейство парвовирусов), дающий потомство только в присутствии аденовируса-помощника. Дефектные вирусные частицы накапливаются в популяции многих вирусов, особенно при пассировании их с высокой множественностью инфекции. Дефектные частицы интерферируют при репро­дукции вируса с инфекционными вирусными частицами и потому называются дефектными интерферирующими ча­стицами (ДИ-частицами). Этот тип вирусных частиц наи­более хорошо изучен на модели вирусов везикулярного стоматита и гриппа. Получение дефектных частиц вируса гриппа при заражении куриных эмбрионов с высокой мно­жественностью инфекции получило название феномена фон Магнуса по имени исследователя, впервые его опи­савшего. Дефектные вирусные частицы вызывают абортив­ную инфекцию в связи с тем, что они лишены части генетического материала. Например, дефектные частицы вируса гриппа содержат неполные последовательности Р-генов, кодирующих три высокомолекулярных вирусных белка.

Заражение чувствительных клеток в не­разрешающих условиях. Абортивная Инфекция может возникать при изменении условий, в которых про­исходит инфекционный процесс. Эти условия возникают в организме и могут моделироваться в эксперименте; в организме — повышение температуры, изменение рН в очаге воспаления и концентрации ионов, наличие антиме­таболитов, ингибиторов и т. д.; в эксперименте — изме­нение температуры инкубации, состава питательной среды, внесение антиметаболитов и ингибиторов и т. д. В резуль­тате клетка либо погибнет без продукции инфекционного вируса, либо инфекция прерывается на определенном этапе. При устранении неразрешающих условий абортив­ная инфекция превращается в продуктивную. Смена абор­тивной инфекции на продуктивную может осуществить­ся и с помощью вируса-помощника.

Заражение нечувствительных клеток стандартным вирусом приводит к наиболее рас­пространенной форме абортивной инфекции.

Непермиссивность клетки к определенному вирусному агенту может проявиться на любом этапе инфекции. Чувствительность клетки к ряду вирусов определяется на­личием на клеточной поверхности специфических рецеп­торов, обусловливающих адсорбцию и проникновение вируса в клетку. Такой генетически обусловленный меха­низм клеточной резистентности наиболее четко установлен для пикорнавирусов, а также онковирусов птиц. Для боль­шинства вирусов можно подобрать две клеточные системы, в одной из которых будет развиваться продуктивная, а в другой — абортивная инфекция. Механизм генетически обусловленной резистентности клеток к вирусам широко варьирует, но в основе его лежит либо отсутствие клеточ­ных факторов, необходимых для репродукции вируса, либо наличие факторов, нарушающих процесс репродукции.

У сложно устроенных вирусов клеточная непермиссивность часто проявляется на стадии сборки вирусных частиц; нарушение сборки в некоторых непермиссивных системах для вирусов гриппа и парамиксовирусов обуслов­лено уменьшением количества молекул матриксного белка вируса.

Острая и хроническая инфекция.Как продуктивная, так и абортивная инфекция может протекать в виде ост­рой или хронической инфекции.

Острой называется такая форма инфекции, при кото­рой после образования вирусного потомства клетка либо погибает, либо выздоравливает и не содержит вирусных компонентов. Хроническая инфекция — это такая форма инфекции, при которой клетка продолжает продуцировать вирусные частицы или вирусные компоненты в течение длительного времени и передает эту способность дочер­ним клеткам.

Чаще хроническую форму приобретает абортивная ин­фекция, так как вирусный генетический материал обычно не входит в состав вирусного потомства, а накапливается в клетках и передается в дочерние клетки. Одним из фак­торов, вызывающих хроническую инфекцию, являются ДИ-частицы. Такие частицы, попадая в клетки вместе с инфекционными вирусными частицами, конкурируют с ни­ми за факторы репродукции и препятствуют образованию инфекционного потомства. В результате гибель клеток предотвращается. При появлении в системе новых чувст­вительных клеток в них вновь возникает продуктивная инфекция с образованием ДИ-частиц, и такой цикл инфек­ции возобновляется снова и снова.

Цитолитическая и нецитолитическая ин­фекции. Острая инфекция на клеточном уровне может быть цитолитической и нецитолитической в зависимости от судьбы зараженной клетки. Инфекция, завершающаяся гибелью (лизисом) клетки называется цитолитической. Ин­фекция, которая непосредственно не приводит к лизису клетки, и клетка еще может функционировать в течение некоторого периода времени, продуцируя вирусные ча­стицы, называется нецитолитической.

Смешанная инфекция. Вестественных условиях рас­пространен феномен смешанной инфекции, при котором клетка заражается двумя или несколькими разными вируса­ми. Два и больше инфекционных процесса, происходящих одновременно в одной клетке, могут оказывать различное влияние друг на друга. Возможны несколько вариантов взаимодействия вирусов в процессе смешанной инфекции.

1. Один из вирусов подавляет репродукцию второго вируса, или подавляется репродукция обоих вирусов. Этот феномен называется интерференцией вирусов.

2. Вирус усиливает репродукцию второго вируса в ре­зультате комплементации или экзальтации. Комплемента­ция может происходить между двумя родственными или не­родственными вирусами, например между аденовирусом и аденоассоциированным вирусом человека или SV40, при этом вирус-помощник предоставляет другому вирусу не­структурный белок. Экзальтация может быть связана с по­давлением процесса образования интерферона первым ви­русом.

3. Оба вируса не оказывают существенного влияния на процесс репродукции каждого из них, однако может про­исходить нарушение морфогенеза обоих вирусов.

Смешанная инфекция широко используется вирусоло­гами для изучения генетических функций вирусов и де­фектности геномов.

ЦИТОПАТОЛОГИЯ ЗАРАЖЕННОЙ ВИРУСОМ КЛЕТКИ

Цитопатический эффект является следствием несколь­ких причин: 1) нарушение нормальной жизнедеятельности клетки в результате механического повреждающего действия вирусных компонентов на клеточные структуры; 2) повреждение лизосом, в результате чего освобождаются высокоактивные лизосомальные ферменты, вызываю­щие аутолиз клетки; 3) интенсивное истощение белковых и энергетических ресурсов клетки за счет переключения клеточных ферментов и белок-синтезирующего аппарата на синтез вирусспецифических макромолекул; 4) специ­фическое повреждающее действие вирусов на клеточные молекулы. Эти причины повреждения клетки различным образом проявляются и сочетаются при разных вирусных инфекциях.

Симпласты. Некоторые вирусы вызывают характерный цитопатический эффект, проявляющийся в слиянии клеток и образовании многоядерных клеток, называемых симпластами или синтицием. Образование симпластов обу­словлено действием на клеточные мембраны прилежащих друг к другу клеток вирусных белков слияния и опреде­ляется тем же механизмом, который обеспечивает слияние вирусной и клеточной мембраны и проникновение виру­сов в клетку. Слияние может происходить как за счет белков родительского вируса при заражении клеток боль­шими концентрациями вируса (слияние снаружи), так и за счет внутриклеточного накопления вновь синтезирован­ных вирусных белков слияния (слияние изнутри). Обра­зование симпластов вызывают многие вирусы: парамиксовирусы, некоторые ретровирусы, вирусы герпеса. В опре­деленных условиях (при низких значениях рН) слияние вызывают вирусы гриппа, буньявирусы и др.

Особенности вирусной инфекции в клеточной попу­ляции. Основной особенностью вирусной инфекции в клеточной популяции является гетерогенность системы в свя­зи с гетерогенностью вирусных частиц и клеток, входящих в состав популяции. В любом вирусном препарате наря­ду с инфекционными вирионами находятся ДИ-частицы. Клетки в каждой клеточной популяции широко варьируют по чувствительности к вирусу, и инфекция может протекать не так, как на клеточном уровне. Например, при заражении вирусом, вызывающим в клетках продуктив­ную инфекцию, чувствительные клетки популяции могут погибнуть, и в популяции за счет некоторого количества нечувствительных клеток может установиться хроническая инфекция.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.