Информация об gen вирусе


Революция в эволюции

— Например, вирус Эбола и вирус Марбурга — на самом деле одна и та же геморрагическая лихорадка, — пояснил он. — Их возбудитель очень похож. И вдруг у Эболы смертность 86%, а у Марбурга — 35%. Понятно, что африканский континент отличается от Европы по экономическим факторам, но дело тут еще и в возможности заражать конкретные расы.



Геном вируса, который так поспешно опубликовали китайские ученые, по словам специалистов, не дает возможности быстро опознать внутри нуклеотидной последовательности вкрапления чужеродных компонентов.

Подозрения в нецелевом использовании генома отчасти подтверждаются и научной статьей 2015 года в журнале Nature. В ней обсуждается спроектированный коронавирус летучей мыши, который может инфицировать клетки человека. Материал был опубликован в Nature Medicine 19 ноября 2015 года. Причем в число 15 авторов вошли 13 американцев и двое китайских ученых из Уханьского института вирусологии, расположенного в городе, с которого и началось распространение по миру вируса 2019-nCoV.



— Если вирус вырвется, никто не сможет предсказать траекторию (распространения), — заявил тогда Саймон Уэйн-Хобсон, вирусолог из Института Пастера в Париже.

Вирусный конструктор



— Коронавирус вполне может быть избран в качестве объекта для создания идеальной конструкции для заражения, — объяснил российский специалист по генетике вирусов, также пожелавший остаться неизвестным. — Вирус респираторный, то есть эффективно распространяется (эффективнее только вирус кори). В его геноме большое количество генов, что удобно. Он очень неприятен особой комбинацией: патоген респираторный и бессимптомный на первых этапах. У него оттянутый инкубационный период. Это самая опасная комбинация, которая может быть.

Как объяснил специалист, коронавирус берет под контроль первые фазы инфекции. Он умеет подавлять иммунный ответ на первых стадиях. Когда количество копий переваливает за определенный уровень, иммунитет срабатывает, но уже в виде системного иммунного ответа. Этот ответ такой сильный, что приводит к поражению легких.


К моменту появления симптомов вирус находится уже почти во всех клетках организма. В итоге иммунная система дает столь сильный ответ, что в легких образуется отек, их жизненный объем сокращается до минимума, и заболевшие не могут дышать.

Однако пока четких указаний на то, что вирус был создан искусственно, нет ни у одного эксперта.

Природа знает как


— Действительно, судя по исследованиям, этот тип коронавируса эффективнее заражает именно жителей Китая. Однако вызывает большие сомнения то, что он создан искусственно. В природе и так слишком много естественных возбудителей этого заболевания, — считает специалист.



— Потенциально этническая избирательность для вирусов возможна и в природе, — объяснил он. — Например, если в процессе размножения вирус будет использовать клеточные структуры, которые есть только у представителей определенной расы. Так, было высказано предположение, что для входа в клетку вирус использует рецептор на ее поверхности и у людей монголоидной расы таких рецепторов в несколько раз больше, чем у представителей других народов. В таком случае шансов заразиться и более тяжело перенести болезнь у людей с такими особенностями гораздо больше.

Пока это можно считать вполне внятным объяснением, почему большинство заболевших — именно китайцы, заметил эксперт. Но, так или иначе, любая из теорий происхождения нового коронавируса вызывает у экспертов массу вопросов. Каждая из них требует подтверждений, и пока у ученых их нет.

  • 6635
  • 5,6
  • 0
  • 5



Вопрос о происхождении вирусов

Существует три основные теории возникновения вирусов [1]:

Зарождение жизни. Идея последнего универсального общего предка: каким он мог бы быть и что ему предшествовало?


Рисунок 1. Схема трехдоменной классификации, предложенная Вёзе. В основании этой схемы должен находиться последний универсальный общий предок (англ. last universal common ancestor, LUCA). Рисунок из Википедии.

Самый сильный аргумент в пользу существования LUCA — сохранившаяся общая система экспрессии генов (передачи наследственной информации от гена с образованием РНК или белков), одинаковая для всех живущих организмов. Все известные клеточные формы жизни используют один и тот же генетический код из 20 универсальных аминокислот и стоп-сигналов, закодированных в 64 кодонах (единицах генетического кода). Трансляция генетической информации в процессе синтеза белков по заданной матрице выполняется рибосомами, состоящими из трех универсальных молекул РНК и примерно 50 белков, из которых 20 так же одинаковы для всех организмов.

В 2010 году американский биохимик Даглас Теобальд математически проверил вероятность существования LUCA [6]. Он выбрал 23 белка, встречающихся у организмов из всех трех доменов, но имеющих разную структуру у различных видов. И исследовал эти белки у 12 различных видов (по четыре из каждого домена), после чего использовал компьютерное моделирование различных эволюционных сценариев, чтобы понять, при каком из них наблюдаемая картина будет наиболее вероятной. Оказалось, что концепция, включающая существование универсального предка, значительно вероятнее концепций, где его нет. Еще более вероятна модель, основанная на существовании общего предка, но допускающая обмен генами между видами [7].

Предположение о том, что LUCA был прокариотической клеткой, похожей на современные, часто принимается по умолчанию. Однако мембраны архей и бактерий имеют разное строение (рис. 2). Получается, что общий предок должен был обладать комбинаторной мембраной. Новая информация о мембранах LUCA появилась в 2012 году, когда несколько групп ученых подробно проанализировали историю генов всех ферментов биосинтеза компонентов липидов у бактерий, архей и эукариот [8].


Родственными у архей и бактерий оказались ферменты для синтеза терпеновых спиртов и пришивания полярных голов к спиртам. Значит, эти реакции мог проводить и LUCA. Проще всего было предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серина или инозитола). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны обладают высокой подвижностью по сравнению с современными мембранами, хорошо пропускают ионы металлов и малые органические молекулы. Это могло позволять древним протоклеткам поглощать готовую органику из внешней среды даже без транспортных белков.

Реконструкции LUCA методами сравнительной геномики указывают на то, что это должен быть сложный организм без обширного ДНК-генома (геном, состоящий из нескольких сотен РНК-сегментов или ДНК провирусного типа). Но даже если считать возможность существования общего предка доказанной, остается загадкой, в какой среде он мог бы появиться.

Предполагается, что идеальные условия для формирования жизни существовали вблизи термальных геоисточников (морских или наземных) в виде сети неорганических ячеек, обеспечивающих градиенты температуры и рН, способствующих первичным реакциям, и предоставляющих универсальные каталитические поверхности для примитивной биохимии [10].

Эти отсеки могли быть населены разнородной популяцией генетических элементов. Вначале сегментами РНК. Затем более крупными и сложными молекулами РНК (один или несколько белок-кодирующих генов). А позднее и сегментами ДНК, которые постепенно увеличивались (рис. 3).


Такие простейшие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала они должны были подчиняться индивидуальному отбору ввиду большого разнообразия. Но ясно, что важным фактором такого отбора была способность передавать генетическую информацию, то есть, копировать себя. Присутствие одновременно в одной ячейке молекул, способных копировать РНК, кодировать полезные белки и управлять синтезом новых молекул, давало больше шансов выживать в каждой отдельной ячейке. И в такой системе рано или поздно должны были появиться паразитирующие элементы. А если это так, то вирусные элементы стоят у самых истоков эволюции [11].

Возникновение паразитов — неизбежное последствие эволюционного процесса


Рисунок 4. Схематическое представление структуры модели эволюции РНК-подобной системы. На втором этапе цепочки последовательностей начинают соединяться комплементарными связями сами с собой. В результате у двух видов (cat-C и cat-A) возникает вторичная структура молекулы, которая обладает каталитическим свойством. Она ускоряет собственную репликацию (или репликацию несвернувшихся соседей). Два вида при этом приобретают паразитические свойства (par-G и par-U). Пояснения в тексте. Рисунок из [12].

Таким образом, паразитарные репликаторы способствуют эволюции разнообразия, вместо того, чтобы мешать этому разнообразию. Это также делает существующую систему репликатора чрезвычайно стабильной при эволюции паразитов.

Согласно гипотезе Черной Королевы, чтобы поддержать свое существование в постоянно эволюционирующем мире, вид должен реагировать на эти эволюционные изменения и должным образом приспосабливаться к среде. Поэтому, если мы говорим о вирусах как о паразитах, мы обязаны представлять себе взаимоотношения вируса с хозяином. В борьбе с вирусом хозяева развивают новые защитные механизмы, а паразиты отвечают, развивая механизмы для атаки и взлома защиты. Этот процесс может длиться бесконечно либо до вымирания одной из противоборствующих сторон. Так множественные системы защиты составляют существенную часть геномов всех клеточных организмов, а взлом защиты — одна из основных функций генов у вирусов с большими геномами*.

Механизмы клеточной защиты против вирусов

Механизмы защиты от вирусов стандартны, поскольку все вирусы уникальны, и приспособиться к каждому не представляется возможным. Это такие механизмы как:

  1. Деградация РНК (вирусных и клеточных) — РНК-интерференция;
  2. Угнетение синтеза белков (вирусных и клеточных);
  3. Ликвидация зараженных клеток — апоптоз (программируемая клеточная смерть);
  4. Воспаление.

Получается, что клетка борется с вирусом, нарушая собственные обмен веществ и/или структуру. Защитные реакции клетки — это в основном самоповреждающие механизмы.

Вирус заражает конкретную клетку потому, что его механизмы нападения направлены именно против данного типа клеток. Это такие механизмы как:

  1. Угнетение синтеза клеточной РНК;
  2. Угнетение синтеза клеточных белков;
  3. Нарушение клеточной инфраструктуры и транспорта;
  4. Подавление/включение апоптоза и других видов клеточной смерти.

Схемы защитных приемов клетки и противозащиты вирусов во многом идентичны. Вирусы и клетки применяют одни и те же приемы. Для подавления синтеза вирусных белков клетка использует интерферон, а чтобы подавить образование интерферона, вирус угнетает синтез белков.

Поскольку узнавание вируса неспецифическое, клетка не может знать намерения конкретного вируса. Она может бороться с вирусом лишь стандартными приемами, поэтому ее оборонные действия часто могут быть чрезмерными.

Понятие о вирусном геноме, типы вирусных генов, концепция генов-сигнатур

В исследовании, проведенном вирусологом Евгением Куниным и его коллегами [16], анализ последовательностей вирусных геномов выявил несколько категорий вирусных генов, принципиально отличающихся по происхождению. Можно обсуждать, какая степень дробности классификации оптимальна, но четко различаются пять классов, укладывающихся в две более крупные категории.

Гены с четко опознаваемыми гомологами у клеточных форм жизни:

  1. Гены, присутствующие у узких групп вирусов (обычно это гены, гомологичные генам хозяев этих вирусов).
  2. Гены, консервативные среди большой группы вирусов или даже нескольких групп и имеющие относительно отдаленные клеточные гомологи.

Таким образом, отличительные особенности генов-сигнатур:

  • Происхождение из первичного пула генов;
  • Наличие лишь очень отдаленных гомологов среди генов клеточных форм жизни, из чего можно сделать вывод, что они никогда не входили в геномы клеточных форм;
  • Необходимость для репродукции вирусов.

Из всего вышесказанного следует, что эти гены переходили от вируса к вирусу (или к элементу, подобному вирусу) на протяжении четырех миллиардов лет эволюции жизни, а вирусные геномы появились благодаря перемешиванию и подгонке друг к другу генов в гигантской генетической сети, которую представляет собой мир вирусов. Многочисленные гены клеточных форм жизни также пронизывают эту сеть, прежде всего благодаря геномам крупных вирусов, таких как NCDLV и крупным бактериофагам, которые позаимствовали множество генов от своих хозяев на разных этапах эволюции. Однако большинство заимствованных генов сами по себе не критичны для репликации и экспрессии вирусного генома (исключая некоторые случаи возможного неортологичного замещения генов-сигнатур); обычно эти гены участвуют во взаимодействии между вирусом и хозяином. Таким образом, несмотря на интенсивный взаимообмен генами с хозяевами, вирусы всегда происходят от других вирусов.

Вирусы, встроенные в геном, и горизонтальный перенос генов

В процессе эволюции многие вирусы встроились в геномы клеточных форм жизни путем горизонтального переноса генов (ГПГ). Впервые горизонтальный перенос был описан в 1959 году, когда ученые продемонстрировали передачу резистентности к антибиотикам между разными видами бактерий. В 1999 году Рави Джайн, Мария Ривера и Джеймс Лейк в своей статье писали о произошедшей значительной передаче генов между прокариотами [17]. Этот процесс, по-видимому, оказал некоторое влияние также и на одноклеточные эукариоты. В 2004 году Карл Вёзе опубликовал статью, в которой утверждал, что между древними группами живых организмов происходил массивный перенос генетической информации. В древнейшие времена преобладал процесс, который он называет горизонтальным переносом генов. Причем, чем дальше в прошлое, тем это преобладание сильнее [18].

Горизонтальный перенос генов — процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Горизонтальная передача генов реализуется через различные каналы генетической коммуникации — процессы конъюгации, трансдукции, трансформации, переноса генов в составе плазмидных векторов, вирусов, мобильных генетических элементов (МГЭ).

Трансдукция — перенос бактериофагом (агентами переноса генов, АПГ) в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг [19]. Такой бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). В зависимости от типа трансдукции — неспецифической (общей), специфической или абортивной, геном фага или хозяина-бактерии может быть изменен тем или иным образом:

  • При неспецифической трансдукции (рис. 5) ДНК клетки-хозяина включаются в частицу фага (дополнительно к его собственному геному или вместо него);
  • При специфической трансдукции гены фага замещаются генами хозяина;
  • При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в ДНК хозяина-реципиента, а остаётся в цитоплазме и не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток и затем теряется в потомстве.


Рисунок 5. Схема общей трансдукции. Фото с сайта vkjournal.ru.

Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом λ. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции.

Вот несколько примеров важных эволюционных событий, связанных с молекулярным одомашниванием:

  1. Ферменты теломеразы, служащие для восстановления концевых участков хромосом, возможно, ведут свое происхождение от обратных транскриптаз, кодируемых ретровирусами и ретротранспозонами [22];
  2. Белки RAG, играющие ключевую роль в системе адаптивного иммунитета, по-видимому, происходят от прирученных транспозаз — ферментов, кодируемых транспозонами;
  3. Ген Peg10, необходимый для развития плаценты, был позаимствован древними млекопитающими у ретротранспозона (рис. 6) [23].


Рисунок 6. Роль гена Peg10 в эмбриональном развитии. Ученые под руководством Рюичи Оно из Токийского медицинского университета Японии показали, что у мышей с выключенным геном Peg10 нарушается развитие плаценты, от чего эмбрион погибает через 10 дней после зачатия [24]. Фото с сайта flickr.com.

В 2008 году в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии [25]. Это гены белков оболочки ретровируса. Каждый из них входит в состав своего эндогенного ретровируса (ЭРВ), причем все остальные части этих ЭРВ давно не функционируют.

Вирусные гены ENVV1 и ENVV2 у человека и обезьян работают в плаценте и, скорее всего, выполняют следующие функции:

Таким образом, как минимум три полезных применения нашли себе вирусные гены в плаценте приматов. Это показывает, что генетические модификации, которым ретровирусы подвергают организмы, в долгосрочной перспективе могут оказаться полезными или даже определить развитие вида. И с учетом всего вышесказанного древо доменов должно выглядеть как на схеме ниже (рис. 7).


Рисунок 7. Горизонтальный перенос генов в рамках трехдоменного дерева. Рисунок из [26].

Заключение

Возникновение паразитов — обязательная черта эволюционирующих систем репликаторов, а соревнование хозяев и паразитов движет эволюцию тех и других. Любой организм является результатом миллионов лет борьбы клеток с невероятно разнообразным миром вирусов. Их действия и их эволюция пронизывают всю историю клеточной эволюции, и сейчас меняется само наше представление о них. Когда-то вирусы считали деградировавшими клетками, но чем больше мы узнаем о вирусах, тем очевиднее, что их роль в общей эволюции значительна. И невероятно много нам еще предстоит узнать.

Статья написана в соавторстве с Евгенией Щепенок.

Петербургские ученые в середине марта расшифровали полный геном нового коронавируса. Такие исследования проводят по всему миру: они позволяют проследить, как эволюционирует вирус. Это поможет в разработке вакцины от COVID-19.

— Есть множество конспирологических теорий насчет нового коронавируса. Например, он якобы был создан в лаборатории в Ухане. Вы работали над расшифровкой генома вируса. Откуда он все-таки взялся?

— Главный природный резервуар для коронавирусов — летучие мыши. Бывает еще промежуточный хозяин. В случае с коронавирусом MERS, ближневосточным респираторным синдромом, первый случай которого выявили в 2002 году, промежуточный хозяин — это верблюд. Большое количество заражений людей было именно от верблюдов.

В случае нового коронавируса промежуточный хозяин точно неизвестен. Есть несколько кандидатов, среди которых довольно экзотическое животное панголин.

Мне кажется, что гипотеза об искусственном происхождении, о беглом из лаборатории вирусе не очень состоятельна. Природа разнообразна, а наши возможности по направленному созданию вирусов с заданными свойствами не очень велики.

Искусственное создание каких-то вирусов как биологического оружия довольно бесперспективное занятие. Это очень большие и дорогие исследования. Не понятно, зачем это нужно. Это точно не принесет вам денег.

Сравнение вируса SARS-CoV-2, [вызывающего COVID-19], с искусственно созданными в экспериментальных целях коронавирусами, публикации о которых наделали в последнее время много шума, показывает, что они значительно отличаются. Это свидетельствует против конспирологических теорий о рукотворном происхождении SARS-CoV-2.

— Чем вирус, вызывающий COVID-19, отличается от других типов коронавируса? Их более 40.

— Семейство представлено четырьмя основными группами коронавирусов: это альфа-коронавирусы, бета-коронавирусы, гамма-коронавирусы и дельта-коронавирусы. Гамма- и дельта- коронавирусы у человека никогда не выявлялись. Это сугубо ветеринарный вопрос.

Альфа- и бета- коронавирусы встречаются у человека. И их можно разделить на сезонные человеческие коронавирусы и зоонозные, которые передаются от животных к человеку. Есть два сезонных альфа-коронавируса и два сезонных бета-коронавируса. Они, по-видимому, проникли в человеческую популяцию когда-то очень давно. По некоторым расчетам, первый проник около 800 лет тому назад.

Сейчас это вирусы, которые передаются от человека к человеку, каждый год вызывают сезонные ОРВИ и на самом деле особо ничем не примечательны, кроме того, что человек может переболеть одним и тем же коронавирусом два раза в течение короткого периода времени.

— Ваша лаборатория расшифровала геном коронавируса. Расскажите, пожалуйста, об этом поподробнее.

— Наша лаборатория секвенировала первый геном коронавируса из России. Это принципиальный вопрос, потому что некоторые сразу решили, что мы претендуем на какое-то мировое первенство, но это не так. Естественно, первыми это сделали китайцы и опубликовали свои данные еще в январе.

— Зачем эти исследования проводят сразу в нескольких странах? Что это позволяет узнать?

— Это позволяет оценить изменчивость вируса, понять, как он эволюционирует и насколько быстро. Это молекулярная эпидемиология, довольно развитая область для исследования гриппа, например. Есть огромная сеть надзора за гриппом в мире, в лабораториях этой сети секвенируется огромное количество вирусов гриппа — это основная задача и нашей лаборатории. Данные по России отправляются в международную базу данных и используются для выбора вакцинного штамма на следующий сезон, чтобы это лекарство хорошо работало.

Сейчас глобальная система надзора за гриппом перестраивается для борьбы с новой коронавирусной инфекцией. Группы ученых, которые могут секвенировать коронавирусы по всему миру, отправляют данные в базу, которая открыта для мирового научного сообщества и ВОЗ. Мы были, кажется, 923-и в мире, кто секвенировал этот вирус. Сейчас в базе данных лежит уже 1200 геномов.

Всё это нужно для создания вакцин. Потому что если какие-то участки генома вируса меняются быстро, а какие-то медленно, то для вакцины важно выбирать медленный. Если вы возьмете высоко вариабельный участок, то вирус быстро мутирует, и ваша вакцина не будет работать.

Кроме того, есть целый раздел вычислительной химии и фармакологии. Зная последовательности белков вируса, можно попытаться найти химические соединения, которые бы эти белки блокировали. Сейчас уже есть статьи, люди проверяют десятки, сотни миллионов химических соединений с помощью мощных компьютеров, [выясняют], могли бы они выступать в качестве противовирусных препаратов.

Понимание изменчивости вируса — это наше знание общего врага, с которым мы боремся. Поэтому очень важно, чтобы из каждой страны были данные. Наша заслуга заключается только в том, что мы просто хорошо сделали свою работу: за два дня отсеквенировали попавший к нам образец и сделали его генетическую информацию доступной всему миру.

— А образец вам попал от какого-то инфицированного россиянина?

— Да, от больного c COVID-19.

— Вы упомянули, что можете проследить, как эволюционирует вирус. Удалось ли вам сейчас сделать определенные выводы насчет SARS-CoV-2?

— Самый главный предварительный вывод — что он меняется и мутирует значительно медленнее, чем грипп. Это можно утверждать уже точно. У вируса, который мы секвенировали, отличий пять-шесть на 30 тысяч букв в геноме. У вирусов гриппа геном 13 тысяч, и в нем в течение нескольких месяцев может произойти больше замен.

— У многих людей аргумент такой: от сезонного гриппа умирает намного больше людей, чем от коронавируса, не разводите панику. Действительно ли это так?

— Первое отличие гриппа в том, что это вакциноуправляемая инфекция. Существуют отработанные технологии производства гриппозных вакцин фактически от любого варианта гриппа. Когда была пандемия 2009 года, за довольно короткий срок удалось сделать вакцину, потому что этой технологии уже много-много лет. От коронавируса вакцин в настоящее время не существует. И нет понимания, какая технология лучше для создания вакцины. Сейчас нужно на ходу принимать решение.

В абсолютных числах от пандемического гриппа 2009 года умерло значительно больше людей, чем к настоящему моменту от новой коронавирусной инфекции. Это правда. Но с другой стороны, для сезонного гриппа нет такой удручающей возрастной статистики по смертности. Сейчас, по предварительным данным, у 80 % зараженных болезнь протекает легко, 20 % требуют медицинской помощи. Но если смотреть по возрастным группам, то пожилые люди находятся под очень серьезной угрозой. По итальянским данным, смертность среди пожилых людей может достигать 14–15 %. Это очень высокая цифра, которую мы не наблюдаем у сезонного гриппа.

Другое дело, должно пройти время, нужно еще накопить данные, чтобы четко и непредвзято сравнить новый вирус с вирусом гриппа. Потому что в разных странах статистика может искажаться в зависимости от объема проведенных тестирований. От того, кого в первую очередь тестировали, какие тест-системы используются. Сейчас просто рано об этом говорить. Но человечество вынуждено действовать на опережение.

Научные статьи, рецензирование, проверка занимают очень много времени. Сейчас из-за того, что все находятся под большим давлением, из-за того, что нужно обмениваться данными здесь и сейчас, огромное количество сведений опирается на препринты, черновики, не прошедшие рецензирование статьи. В сложившейся ситуации мы не можем позволить себе ждать шесть месяцев. Но нужно трезво относиться к этому. Потом какие-то данные при спокойном анализе будут пересмотрены.

Сейчас известно, что коронавирус более заразный, чем сезонный грипп. Если человек, инфицированный сезонным гриппом, заражает не более двух человек, то больной с инфекцией SARS-CoV-2 заражает двух-трех человек. По сравнению с корью заразность нового коронавируса значительно меньше. Больной корью заражает десять–двенадцать человек.

— Почему именно в Италии так много заразившихся?

— Не находясь внутри и не будучи знакомым с тем, как устроена итальянская система здравоохранения, мне очень сложно об этом судить. Но, кажется, что свою роль сыграло то, что, во-первых, в Италии много туристов. Кроме того, культурные особенности: это одна из стран с наименьшей социальной дистанцией. А также непринятие своевременных карантинных и ограничительных мер.

— Грозит ли России что-то подобное? Или из-за того, что мы начали принимать меры, всё будет проходить мягче?

— Сложно прогнозировать, но вероятность такая есть. Я бы лично отнесся с пониманием к еще более жестким мерам.

— Более серьезные меры по соблюдению режима самоизоляции, карантина, ограничению социальных контактов. Здесь каждая страна пытается найти баланс между экономическим ущербом от карантинных мер, экономическим ущербом от эпидемии и теми жертвами, которые будут понесены. Тем, кто принимает решения, очень сложно этот баланс нащупать.

— Эпидемиологи говорят, что есть несколько вариантов развития. Более легкий — это когда вирус сойдет на нет к маю, кто-то утверждает, что вспышка закончится минимум в сентябре. Вы можете сделать какие-то прогнозы?

— Сейчас очень сложно делать прогнозы, но мне кажется, что у этого вируса есть потенциал, чтобы стать еще одним сезонным коронавирусом. Те, которые известны, тоже пришли от летучих мышей и, возможно, вызывали в прошлом что-то подобное. Просто у человечества в то время не было возможности это распознать.

Пересекая межвидовой барьер, научившись передаваться от человека к человеку, попав в наивную популяцию, не готовую иммунологически, вирус сначала ведет себя довольно агрессивно, а дальше у него есть два пути. Либо он исчезает, как это было с SARS в 2002 году, либо становится сезонным, как это происходит с гриппом. Возникает новый вариант гриппа, он ведет себя довольно агрессивно в первое время, а дальше становится сезонным, не особенно тяжелым.

Для сезонных коронавирусов не характерна циркуляция летом, они циркулируют в осенне-зимний период, вернее даже в зимне-весенний.

— А с чем это связано?

— Это, на самом деле, сложный и не до конца разрешенный вопрос. Есть разные гипотезы, связанные с температурно-влажностным режимом, климатическими особенностями, но ни одна из них не дает четкого ответа, почему какие-то вирусы встречаются в одни месяцы, а другие — в другое время. Несмотря на длительную историю наблюдений за гриппом и ОРВИ, ответа на эти вопросы мы пока не имеем, к сожалению.

— Что вы можете сказать о российских тест-системах? Действительно ли они менее чувствительны, чем европейские?

Чтобы реально доказать, какая тест-система более чувствительна, нужно проверить их. Голословно утверждать, что какая-то система хуже или лучше, я не могу, просто потому что у меня не было опыта работы с ними. У нас есть в лаборатории ВОЗовская тест-система, немецкого производства.

— А как проходит лечение от коронавируса, пока нет вакцины? Это какая-то поддерживающая терапия, я правильно понимаю?

— Да, абсолютно верно. Это поддерживающая терапия. В Китае, когда было много случаев, проводили испытания, пробовали разные препараты. Но, наверное, нужно дождаться публикации каких-то серьезных данных на тему того, что у них там работало, что не работало. Сейчас основное — это поддерживающая терапия.

— А есть ли вакцина от других коронавирусов?

— Нет. Создание вакцины от коронавируса — это вызов науке, вызов человечеству.

— Можете ли вы перечислить какие-то простые меры, которые помогут себя обезопасить?

— Я здесь не скажу чего-то нового по сравнению с рекомендациями ВОЗ: это гигиена рук, ограничение социальных контактов, по возможности переход на удаленную работу, самоизоляция. Соблюдать респираторный этикет, чихать в локтевой сгиб, если заболели и не нуждаетесь в медицинской помощи — лучше никуда не ходить.

— Вы упомянули, что у 80 % заболевших — легкая форма коронавируса. ВОЗ рекомендует таким заболевшим оставаться дома, не вызывать врачей, не идти в больницу, так?

— Да, всё верно. Люди, которые не требуют какого-то специального медицинского ухода, конечно, могут оставаться дома.

Главный вопрос — это емкость системы здравоохранения, потому что ни одна страна не готова к одномоментному поступлению гигантского количества больных, требующих сложного медицинского ухода. Просто потому что не будет хватать коек, аппаратов искусственной вентиляции легких, не будет хватать врачей, что мы видим сейчас в Италии. Весь смысл ограничительных мер заключается в том, чтобы сделать кривую роста случаев более плоской.

Пока нет препаратов и вакцины, карантинные и прочие ограничительные меры — это единственное, как вы можете противодействовать вирусу. От вашей сознательности зависит жизнь других людей.

— Хотелось бы уточнить про вакцины. Сколько обычно проходит времени с момента тестирования до того, как их начинают использовать?

— К сожалению, это не быстрое дело. Сначала нужно придумать, потом нужно доказать, что то, что ты придумал, — эффективно. Нужно доказать на животных, дальше нужно показать на них же, что это безопасно, нужно провести клинические исследования на волонтерах.

— А если это удастся сделать за рубежом, как это можно будет распространить по другим странам, может, есть предыдущий опыт?

Страны с более мощной биотехнологической сферой, которым удастся первым сделать работающие вакцины, вполне логично постараются в первую очередь обеспечить своих граждан.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.