Иммунный ответ при гриппе

У РНК-содержащих ретровирусов сначала происходит обратная транскрипция генома в ДНК, затем ее интеграция в клеточные хромосомы и лишь после этого транскрипция генов.

Цитопатические эффекты при вирусных инфекциях разнообразны, они определяются как вирусом, так и клеткой и сводятся к разрушению клетки (цитолитический эффект), сосуществованию вируса и клетки без гибели последней (латентная и персистирующая инфекция) и трансформации клетки.

Вовлеченность организма в инфекционный процесс зависит от ряда обстоятельств - количества погибших клеток, токсичности вирусов и продуктов распада клеток, от реакций организма, начиная от рефлекторных и заканчивая иммунными. Количество погибших клеток влияет на тяжесть инфекционного процесса. Например, будут ли поражены при гриппе только клетки носа и трахеи или вирус поразит клетки эпителия альвеол, зависит тяжесть и исход болезни.

Хотя вирусы и не образуют типичных токсинов, однако и вирионы, и вирусные компоненты, накапливающиеся в пораженных тканях, выходя в кровоток, оказывают токсическое действие. Неменьшее токсическое действие оказывают и продукты распада клеток. В этом случае действие вирусной инфекции столь же неспецифично, как и действие патогенных организмов, убивающих клетки и вызывающих их аутолиз. Поступление токсинов в кровь вызывает ответную реакцию - лихорадку, воспаление, иммунный ответ. Лихорадка является преимущественно рефлекторным ответом на поступление в кровь и воздействие на ЦНС токсичных веществ.

Если лихорадка - общий ответ организма на вирусную инфекцию, то воспаление - это местная многокомпонентная реакция. При воспалении происходят инфильтрация пораженных тканей макрофагами, утилизация продуктов распада, репарация и регенерация. Одновременно развиваются реакции клеточного и гуморального иммунитета. На ранних стадиях инфекции действуют неспецифические киллеры и антитела класса IgM. Затем вступают в действие основные факторы гуморального и клеточного иммунитета. Однако гораздо раньше, уже в первые часы после заражения, начинает действовать система интерферона, представляющая семейство секреторных белков, вырабатываемых клетками организма в ответ на вирусы и другие стимулы. Описанные явления относятся к так называемой острой репродуктивной вирусной инфекции. Взаимодействие вируса и клеток может происходить, как отмечалось выше, без гибели последних. В этом случае говорят о латентной, т.е. бессимптомной или персистирующей хронической вирусной инфекции. Дальнейшая экспрессия вируса, образование вирусспецифических белков и вирионов вызывает синтез антител, на этой стадии латентная инфекция переходит в персистирующую и появляются первые признаки болезни.

Репродукция вируса в клетках сопровождается развитием цитопатических процессов, специфичных для разных вирусов и для разных типов инфекционных процессов. Цитопатические процессы при вирусных инфекциях разнообразны, они определяются как вирусом, так и клетками, причем специфика их больше "задается" клеткой, нежели вирусом, и сводится в основном к разрушению клеток, сосуществованию вируса и клеток без гибели последних и трансформация клеток. Несмотря на значительные различия цитоцидного действия разных вирусов, в общем, они сходны. Подавление синтеза клеточных макромолекул - нуклеиновых кислот и белков, а также истощение энергетических ресурсов клетки ведут к необратимым процессам, заканчивающимся гибелью пораженной клетки. Повреждение клеток вирусами, их отмирание и распад переносят вирусную инфекцию с клеточного уровня на уровень организма в целом.

При встрече организма с вирусной инфекцией продукция интерферона (растворимого фактора, вырабатываемого вирус-инфицированными клетками, способного индуцировать антивирусный статус в неинфицированных клетках) становится наиболее быстрой реакцией на заражение, формируя защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, - делая клетки непригодными для размножения вирусов.

Продукция и секреция цитокинов относятся к самым ранним событиям, сопутствующим взаимодействию микроорганизмов с макрофагами. Этот ранний неспецифический ответ на инфекцию важен по нескольким причинам: он развивается очень быстро, поскольку не связан с необходимостью накопления клона клеток, отвечающих на конкретный антиген; ранний цитокиновый ответ влияет на последующий специфический иммунный ответ.

Интерферон активирует макрофаги, которые затем синтезируют интерферон-гамма, ИЛ-1, 2, 4, 6, ФНО, в результате макрофаги приобретают способность лизировать вирус-инфицированные клетки.

Интерферон-гамма является специализированным индуктором активации макрофагов, который способен индуцировать экспрессию более 100 разных генов в геноме макрофага.

Продуцентами этой молекулы являются активированные Т-лимфоциты (Тh1-тип) и естественные киллеры (NK-клетки). Интерферон-гамма индуцирует и стимулирует продукцию провоспалительных цитокинов (ФНО, ИЛ-1, 6), экспрессию на мембранах макрофагов, антигенов МНС II; гамма-интерферон резко усиливает антимикробную и противовоспалительную активность путем повышения продукции клетками супероксидных радикалов, а усиление иммунного фагоцитоза и антителоопосредованной цитотоксичности макрофагов под влиянием гамма-интерферона связано с усилением экспрессии Fc-рецепторов для JgG. Активирующее действие интерферона-гамма на макрофаги опосредовано индукцией секреции этими клетками ФНО -альфа. Этот пик наблюдается совместно с ФНО-альфа. Максимум продукции ИЛ-4 наступает через 24-48 ч с момента активации клеток. При этом ИЛ-4 рассматривается как цитокин, ограничивающий иммуновоспалительные реакции и снижающий ответ организма на инфекцию, угнетая при этом экспрессию гамма-интерферона. Интерферон-гамма ин витро усиливает фагоцитарную активность нейтрофилов, что обусловлено усилением экспрессии Fc-рецепторов и поверхностных белков семейства интегринов на нейтрофилы. Это позволяет нейтрофилам осуществлять цитотоксические функции и фагоцитоз. В качестве основных эффекторных клеток воспалительного процесса, они обеспечивают элиминацию инфекта из организма.

Взаимодействие цитокина с клеткой определяется универсальной биологической системой, специфическим механизмом которой является рецепторный аппарат, связанный с восприятием метаболического кода. Для проявления биологической активности цитокина необходимо присутствие на поверхности чувствительных клеток специфических рецепторов, которые могут экспрессироваться параллельно с синтезом цитокина. Рецепторы цитокинов представляют собой комплексы, состоящие из двух и более рецепторных молекул, которые объединяются на мембране клетки-мишени и образуют высокоаффинный рецепторный комплекс. Большинство рецепторов состоит из отдельных молекул, связывающих цитокины, которые ассоциируются после связывания лиганда с сигналпередающим рецепторным компонентом; часть рецепторов существует как растворимые изоформы, способные связывать и растворять цитокины, а часть функционирует как многокомпонентные блоки; механизм комплексирования субъединиц рецепторов объясняет плейотропные и дублирующие эффекты цитокинов, имеющих большое структурное сходство. Рецепторы ИЛ-10 имеют гомологию рецепторов интерферона, и подобно ИЛ-10 индуцирует экспрессию в моноцитах гена Fc- рецептора. Для полного функционирования цитокиновой системы необходимы повышение уровня цитокина в ответ на инфект и экспрессия нормального количества рецепторов к ним на клетках. Изменение рецепторов после их связывания с цитокином заключается в интернализации комплексов цитокин - рецептор внутрь клетки. На поверхности клеток рецептор появляется заново, постепенно синтезируясь в течение 24-36 ч (время появления рецепторов интерферон-альфа). В этот период клетки остаются чувствительными к последующим дозам цитокина, чем объясняется эффективность введения препаратов интерферона и их индукторов три раза в неделю.

Пик продукции цитокинов после стимуляции макрофагов наблюдается через 1-2,6,18-48 ч, а пик продукции интерферон-гамма наступает через 20 ч после первого выхода цитокина из клетки. Поскольку интерферон-гамма ингибирует миелопоэз, то нормализация числа нейтрофилов после элиминации инфекта связана с системой регуляции нейтропоэза. Через 6 ч после стимуляции интерферон-альфа для выполнения своих функций NK-rклетки (активность которых регулируется ИЛ-1, 4, 2) продуцируют гамма-интерферон, в результате чего происходит лизис инфицированных клеток.

При антигенной стимуляции клеток трансдукция сигнала с активированного рецептора на генетический аппарат осуществляется с помощью внутриклеточных регуляторных систем, компоненты которых (белки мембран, ферментов, хроматина) связываются с чувствительными к ним последовательностями ДНК. После связывания цитокина (интерферон) с поверхностными клеточными мембранными рецепторами происходит активация ферментов протеинкиназы-С (ПКС), тирозинкиназы, ц-АМФзависимой протеинкиназы, серин-треонинкиназы. Интерферон-альфа активирует tyk 2 и jak 1-киназы, а интерферон-гамма активирует jak 1 и 2-киназы. Далее факторы транскрипции перемещаются в ядро клетки и связывают гены раннего ответа.

Первый ответ клеток на цитокин - это быстрая индукция генов раннего ответа ("immediate early" генов), в число которых и входит ген интерферон-гамма. Стимуляция экспрессии этих генов важна для выхода клеток из Go-стадии и перехода в Gi-стадию и дальнейшей прогрессии клеточного цикла. Их индукция происходит после активации рецепторов роста на клеточной мембране и активации протеин-киназной системы. Гены раннего ответа являются ключевыми регуляторами клеточной пролиферации и дифференцировки, кодируют белки, регулирующие репликацию ДНК.

Таким образом, при активации клеток происходит стимуляция генов раннего ответа, что ассоциируется с изменением фаз клеточного цикла. Основная протективная роль в иммунном ответе, направленном против внутриклеточных паразитов (грибы, простейшие, вирусы, микобактерии туберкулеза), принадлежит клеточным механизмам. Способность перечисленных возбудителей переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации возбудителя необходим специфический клеточно-опосредованный ответ. Его специфичность определяется антигенраспознающими СД8+-Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов. Решающий момент специфического иммунного ответа - это ответ СД4+Т-лимфоцитов с хелперной направленностью на распознавание антигена. На этом этапе определяется форма иммунного ответа: либо с преобладанием гуморального иммунитета, либо с преобладанием клеточных реакций (ГЗТ). Направление дифференцировки СД4 + -лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии ИЛ-12 и интерферон-гамма СД4 + -лимфоциты дифференцируются в воспалительные Тh1-клетки, начинают продуцировать и секретировать интерлейкин-2, интерферон-гамма, ФНО и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а интерферон-гамма - естественными киллерами, активированными в раннюю фазу ответа на внутриклеточно паразитирующие бактерии и вирусы. В отличие от этого, в присутствии ИЛ-4 СД4 + -лимфоциты дифференцируются в хелперы Тh 2, которые начинают продуцировать и секретировать ИЛ-4, ИЛ-5, ИЛ-6 и запускают гуморальный иммунный ответ, т.е. синтез специфических антител - иммуноглобулинов. Воспалительные Тh 1-лимфоциты нужны для борьбы с внутриклеточными паразитами, а Тh 2 хелперы нужны для элективной защиты от внеклеточных паразитов.

Вирусная инфекция может вызывать быстрое подавление экспрессии ряда клеточных генов (из которых наиболее изучены интерфероновые гены и гены, кодирующие дс-РНК-зависимые ферменты -2,5-ОАС и ПК-дс), принимающих участие в антивирусном действии. Специальные исследования механизма антивирусного действия интерферонов и дс-РНК в клеточных и бесклеточных системах показали ключевую роль в этом процессе вышеуказанных ферментов. ПК-дс, взаимодействуя с дс-РНК, фосфорилируется и в активной форме фосфорилирует регуляторные факторы транскрипции и трансляции, из которых наиболее изучен инициирующий фактор трансляции (eIF2).

ПК-дс выполняет регуляторную роль в системе клеточной пролиферации на уровне факторов трансляции и активации ряда генов цитокинов. Вероятно, существует связь между подавлением транскрипции мРНК и ПК-дс, угнетением общего синтеза клеточного белка при вирусных инфекциях и накоплением в ядрах клеток белка нуклеокапсида и белка NSP2. Фрагментация клеточных хромосом, наблюдающаяся на ранних сроках вирусной инфекции, может быть одной из причин подавления экспрессии генов, участвующих в противовирусном ответе.

Есть основания предполагать участие белков NSP2 в регуляции активности генов цитокинов - низкомолекулярных белковых регуляторных веществ, продуцируемых клетками и способных модулировать их функциональную активность. Нарушения в системе цитокинов приводят к нарушению кооперативных взаимодействий иммунокомпетентных клеток и нарушению иммунного гомеостаза.

В последние годы показано, что ИЛ- 12, относящийся к провоспалительным цитокинам, является ключевым для усиления клеточно-опосредованного иммунного ответа и инициации эффективной защиты против вирусов.

Средства терапии гриппа и ОРЗ можно разделить на этиотропные, иммунокорригирующие, патогенетические и симптоматические. Приоритет принадлежит этиотропным препаратам, действие которых направлено непосредственно на возбудитель инфекции. Все препараты этиотропного действия целесообразно рассматривать с учетом их точек приложения в цикле репродукции вирусов гриппа и других ОРЗ.

Применение химиопрепаратов для профилактики и лечения гриппа и ОРЗ относится к базовой терапии и является общепризнанным мировым стандартом. Многолетние клинические исследования достоверно выявили их высокую лечебно-профилактическую значимость. Химиотерапевтические средства представлены тремя основными группами: это блокаторы М2-каналов (амантадин, ремантадин); ингибиторы нейраминидазы (занамивир, озельтамивир) и ингибиторы протеаз (амбен, аминокапроновая кислота, трасилол). Препараты оказывают прямое антивирусное действие, нарушая различные фазы репликативного цикла вирусов. Несколько особняком стоит группа вирулицидных препаратов, применяемых местно для предотвращения адсорбции и проникновения вирионов в клетки.

  1. Грипп и другие респираторные вирусные инфекции / под ред. О.И. Киселева, И.Г. Мариничева, А.А. Сомининой. - СПб, 2003.
  2. Дриневский В.П., Осидак Л.В., Цыбалова Л.М. Острые респираторные инфекции у детей и подростков // Практическое руководство под редакцией О.И. Киселева. - СПб, 2003.
  3. Железникова Г.Ф., Иванова В.В., Монахова Н.Е. Варианты иммунопатогенеза острых инфекций у детей. СПб, 2007. - 254 с.
  4. Ершов Ф.И. Грипп и другие ОРВИ // Антивирусные препараты. Справочник. - М., 2006. - С.226-247.
  5. Ершов Ф.И., Романцов М.Г. Антивирусные средства в педиатрии. - М., 2005. - С.159-175.
  6. Ершов Ф.И., Киселев О.И. Интерфероны и их индукторы (от молекул до лекарств). М., 2005. - С.287-292.
  7. Иванова В.В. Острые респираторно-вирусные заболевания // Инфекционные болезни у детей. - М., 2002.
  8. Онищенко Г.Г., Киселев О.И., Соминина А.А. Усиление надзора и контроля за гриппом как важнейший элемент подготовки к сезонным эпидемиям и очередной пандемии. - М., 2004. - С.5-9.
  9. Об утверждении стандарта медицинской помощи больным гриппом, вызванным идентифицированным вирусом гриппа (грипп птиц) // Приказ Минздравсоцразвития №460 от 07.06.2006 г.
  10. Романцов М.Г., Ершов Ф.И.Часто болеющие дети: Современная фармакотерапия. - М., 2006. - 192 с.
  11. Стандартизированные принципы диагностики, лечения и экстренной профилактики гриппа и других острых респираторных инфекций у детей / под ред. О.И. Киселева. - Санкт-Петербург. - 2004. - С.82-95.
  12. Лекарственные средства в фармакотерапии патологии клетки / под ред. Т.Г.Кожока. - М., 2007.

Ортомиксовирусы, классификация. Свойства. Антигенная структура и причины изменчивости антигенного строения вирусов гриппа.

Парамиксовирусы. Вирус парагриппа. Вирус кори, паротита, респираторно – синцитиальный вирус. Их свойства. Лабораторная диагностика. Иммунитет. Специфическая профилактика.

Грипп — острое респираторное заболевание, характеризующееся поражением слизистых оболочек верхних дыхательных путей, лихорадкой, симптомами общей интоксикации, нарушением деятельности сердечно-сосудистой и нервной систем. Грипп отличается склонностью к эпидемическому и пандемическому распространению благодаря высокой контагиозности и изменчивости возбудителя.

В 1933 г. У. Смит, К. Эндрюс и П. Лейдлоу от больных гриппом выделили вирус, названный впоследствии вирусом гриппа типа А. В 1940 г. были открыты вирусы гриппа типа В, а в

1947 г. — типа С. В России первые вирусы гриппа были выделены в 1936 г. А. А. Смородинцевым и отнесены к типу А.

Таксономия, классификация. РНК-содержащие вирусы относятся к семейству Orthomyxoviridae (от греч. orthos — правильный, туха — слизь). Семейство включает два рода: род Influenzavirus объединяет вирусы гриппа типов А и В, род Influenza С представлен вирусом гриппа типа С.

Морфология и химический состав. Вирионы имеют сферическую форму диаметром 80—120 нм (рис. 11.2, а), реже палочковидную и нитевидную; состоят из сердцевины и наружной ли-попротеидной оболочки. Сердцевина содержит однонитчатую линейную фрагментированную минус-нитевую РНК, белковый капсид, окруженный дополнительной мембраной — слоем мат-риксного белка. Нуклеокапсид имеет спиральный тип симметрии. На поверхности суперкапсидной оболочки имеются шипы гли-копротеидной природы, одни из которых являются гемагглюти-нином, другие — нейраминидазой (рис. 11.2, б).

Культивирование. Для культивирования используют куриные эмбрионы, культуры клеток, иногда лабораторных животных.

Антигенная структура. Вирусы гриппа имеют внутренние и поверхностные антигены. Внутренние сердцевидные антигены являются типоспецифическими, на основании чего вирусы гриппа подразделяются на типы А, В и С, поверхностные представлены гемагтлютинином (Н) и нейраминидазой (N). Н — основной специфический антиген, вызывающий образование вирус-нейтрализующих антител и обеспечивающий адсорбцию вируса на клетках, в том числе эритроцитах человека или животных, в результате чего происходит их склеивание (гемагглютинации). N вызывает образование антител, частично нейтрализующих вирусы; являясь ферментом, N участвует в освобождении вирусов из клетки.

Характерной особенностью вирусов гриппа, в основном типа А, является изменчивость антигенов Н и N. Известны три разновидности Н и две разновидности N. В зависимости от их сочетания выделяют три подтипа вируса гриппа А человека: H1N1, H2N2, H3N2, соответственно Al, А2, A3. Внутри подтипов имеется множество антигенных вариантов, отличающихся по структуре Н- и N-антигенов.

Изменчивость поверхностных антигенов связана с фрагментарным строением РНК вируса и может происходить в виде дрейфа и шифта. Дрейф — постоянно осуществляющиеся незначительные изменения Н- и N-антигенов в результате точечных мутаций, приводящие к возникновению новых антигенных вариантов вируса. Шифт (скачок) — редко встречающиеся значительные изменения Н- и N-антигенов в результате рекомбинаций, приводящие к появлению новых подтипов вируса.

По сравнению с вирусами гриппа типа А антигенная структура вирусов гриппа типа В изменяется только по типу дрейфа, а тип С не имеет N-антигена и мало изменчив.

Резистентность. В воздухе вирусы гриппа могут сохранять инфекционные свойства при комнатной температуре в течение нескольких часов; чем выше температура и относительная влажность воздуха, тем быстрее инактивируются вирусы. Возбудители гриппа чувствительны к действию УФ-лучей, многим дезинфицирующим средствам (формалину, этиловому спирту, фенолу, хлорамину), жирорастворителям; в жидкой среде инактивируются при температуре 50—60 °С в течение нескольких минут. Длительное время сохраняются в замороженном состоянии и в глицерине.

Восприимчивость животных. В естественных условиях вирусы гриппа типа А поражают как человека, так и животных; вирусы типов В и С — только человека. Среди лабораторных животных к вирусам гриппа чувствительны африканские хорьки, сирийские хомяки, белые мыши. Заболевание характеризуется поражением легких и нередко заканчивается гибелью животных.

Возникновение пандемий и крупных эпидемий обычно связано с появлением нового подтипа вируса гриппа А. Ежегодные эпидемические вспышки вызываются новыми антигенными вариантами одного подтипа. В последние годы эпидемии гриппа связаны с вирусом гриппа A (H3N2), хотя среди населения продолжают циркулировать вирусы гриппа A (H1N1) и В.

Источником гриппозной инфекции является больной человек с клинически выраженной или бессимптомной формой. Путь передачи — воздушно-капельный (при разговоре, кашле, чиханье).

Патогенез и клиническая картина. Вирусы гриппа внедряются и репродуцируются в эпителиальных клетках слизистой оболочки верхних дыхательных путей, откуда проникают в кровь и разносятся по всему организму. Продукты распада поврежденных клеток и некоторые вирусные белки оказывают токсическое действие на различные органы и системы организма.

Инкубационный период короткий — от нескольких часов до 1—2 сут. Для гриппа характерны острое начало, высокая температура тела, общая интоксикация, выражающаяся в недомогании, головной боли, боли в глазных яблоках, поражение дыхательных путей различной степени тяжести. Лихорадочное состояние при гриппе без осложнений продолжается не более 5—6 дней. Тяжесть и исход болезни нередко связаны с осложнениями, вызванными самим вирусом гриппа (гриппозная пневмония, острый отек легких) или условно-патогенными бактериями. Развитию осложнений способствует угнетающее действие вирусов гриппа на процессы кроветворения и иммунную систему организма.

Иммунитет. После перенесенного заболевания формируется стойкий типо-, подтипо- и вариантоспецифический иммунитет, который обеспечивается клеточными и гуморальными факторами защиты. Большое значение имеют антитела класса IgA. Пассивный естественный иммунитет сохраняется у детей до 8—11 мес жизни.

Лабораторная диагностика. Материалом для обнаружения вируса или вирусного антигена служат мазки-отпечатки со слизистой оболочки носовой полости, отделяемое носоглотки, при летальных исходах — кусочки легочной ткани или мозга. Экспресс-диагностика основана на выявлении вирусного антигена с помощью РИФ; разработана тест-система для ИФА. Для выделения вирусов используют куриные эмбрионы. Индикацию вирусов гриппа осуществляют при постановке реакции гемагглютинации. Идентифицируют выделенные вирусы поэтапно: типовую принадлежность определяют с помощью РСК, подтип — РТГА. Серодиагностику проводят с помощью РСК, РТГА, РН в культуре клеток, реакции преципитации в геле, ИФА.

Специфическая профилактика и лечение. Для специфической профилактики используют живые и инактивированные вакцины из вирусов гриппа A (H1N1), A (H3N2) и В, культивируемых в куриных эмбрионах. Существует три типа инактивированных вакцин: вирионные (корпускулярные); расщепленные, в которых структурные компоненты вириона разъединены с помощью детергентов; субъединичные, содержащие только гемагглютинин и нейраминидазу. Вакцину из трех вирусов гриппа вводят интра-назально в одной прививочной дозе по специальной схеме. Вакцинация показана определенным контингентам, имеющим высокий риск заражения.

Проходит испытания культуральная инактивированная вакцина. Ведутся разработки по созданию гриппозных вакцин нового поколения: синтетических, генно-инженерных. К сожалению, в отдельные годы отмечается довольно низкая эффективность вакцинации вследствие высокой изменчивости вирусов гриппа.

Для лечения, а также экстренной профилактики гриппа применяют химиотерапевтические противовирусные препараты (ремантадин, виразол, арбидол и др.), препараты интерферона и иммуномодуляторы (дибазол, левамизол и др.). При тяжелом течении гриппа, особенно у детей, показано применение донорского противогриппозного иммуноглобулина, а также препаратов, являющихся ингибиторами клеточных протеаз: гордокса, контрикала, аминокапроновой кислоты.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Чрезмерная реакция иммунитета на вирус зависит от обмена веществ

Глюкоза помогает синтезировать иммунные сигналы, стимулирующие противовирусное воспаление.


Мы часто слышим, что пациенты с новым коронавирусом страдают от слишком сильного иммунного ответа – защитная иммунная реакция начинает вредить незаражённым тканям, что особенно опасно при хронических заболеваниях. Но такой неоправданно сильный иммунный ответ имеет место не только при коронавирусной инфекции, но и, например, при гриппе. Более того, иммунитет порой продолжает бушевать даже после того, как инфекция пошла на спад.

Так может происходить оттого, что вирус долгое время остаётся незамеченным: некоторые коронавирусы умеют подавлять сигналы тревоги от заражённых клеток. Другая причина может быть в особенностях самой иммунной системы: как известно, в иммунитет встроены самоограничители, которые регулируют силу иммунных реакций, стараясь, чтобы они были адекватны угрозе. Если есть проблемы с клетками и молекулами, которые работают регуляторами-ограничителями, то есть большая вероятность, что иммунная система при первой возможности пойдёт вразнос.

И ещё одна причина слишком сильного иммунного ответа связана с особенностями обмена веществ. Этот слишком сильный иммунный ответ развивается оттого, что повышается уровень сигнальных белков-цитокинов: их становится всё больше и больше, воспаление всё усиливается и усиливается, иммунные клетки, которые выделяют токсичные вещества для убийства заражённых клеток, выделяют их всё больше и больше, убивая здоровые клетки. Повышенный уровень воспалительных цитокинов и последствия, к которым это приводит, называют цитокиновым штормом.

Но ведь воспалительные цитокины тоже откуда-то берутся – их синтезируют клетки в ответ на вирусную инфекцию. Цитокины, как и любые белки, закодированы в ДНК. Гены цитокинов, как и любые другие гены, могут быть более активными и менее активными. Активность генов зависит от специальных регуляторных белков, называемых транскрипционными факторами: они садятся на ДНК в начале гена и взаимодействуют с белками, которые синтезируют РНК – которая потом пойдёт в цитоплазму и станет матрицей для сборки белков. Синтез РНК называется транскрипцией, и белки-транскрипционные факторы могут транскрипцию подавлять или усиливать.

На генах воспалительных цитокинов транскрипцию усиливает фактор под названием IRF5, или интерферон-регулирующий фактор 5. Но и сам IRF5 тоже может быть активным или неактивным. Сотрудники Уханьского университета пишут в Science Advances, что IRF5 становится активным, когда к нему присоединяется молекула под названием уридиндифосфат-N-ацетилглюкозамин, или UDP-GlcNAc. Исследователи экспериментировали с мышами, которых после заражения вирусом гриппа ждал цитокиновый шторм – но если у мышей отключали ген фермента, который активировал IRF5, то мыши переносили инфекцию спокойно (как, кстати, и при отключении гена самого IRF5).

Откуда берётся UDP-GlcNAc – активатор IRF5? Он берётся из серии метаболических реакций, которые называются гексозаминовым путём. Синтез UDP-GlcNAc начинается с глюкозы, и тут становится понятно, как связаны вирусная инфекция и слишком сильная иммунная реакция на неё. И вирусу, и иммунным клеткам нужно много глюкозы: во-первых, это источник энергии, во-вторых, она нужна для реакций, в которых создаётся строительное сырьё для более сложных молекул. Но чем больше глюкозы поступает в клетки, тем активнее идут и гексозаминовые реакции, увенчивающиеся UDP-GlcNAc. С одной стороны, всё правильно: против вируса нужны активные действия, и, следовательно, нужны иммунные сигналы-цитокины. С другой стороны, инфекция может уже идти на спад, а IRF5 будет продолжать стимулировать синтез цитокинов, потому что сам будет активирован UDP-GlcNAc.

Как можно догадаться, повышенный уровень глюкозы в крови будет здесь серьёзным фактором риска. Уровень глюкозы повышается при диабете, и хотя при диабете ей трудно проникать в клетки (из-за проблем с инсулином), всё же, если глюкозы оказывается слишком много, она может чрезмерно разогнать реакции синтеза UDP-GlcNAc, и клетка получит слишком активный IRF5.

Больные диабетом действительно часто умирают от осложнений при гриппе и нынешнем COVID-19; и возможно, что и при COVID-19 происходит такая же сахарно-метаболическая переактивация иммунитета. Вероятно, здесь помогли бы средства, снижающие уровень глюкозы, или подавляющие гексозаминовый путь, или же снижающие активность того фермента, который с помощью UDP-GlcNAc активирует IRF5; при этом такие средства, конечно, не должны успокаивать иммунную систему настолько, чтобы она вообще перестала бороться с инфекцией.

Более подробно почему не стоит есть глюкозу при коронавирусе.

Входными воротами для вирусов гриппа является эпителий дыхательных путей. Однако организм человека в течение столетий совершенствовал механизмы защиты и первой их линией являются неспецифические факторы. К ним относятся вязкие свойства слизи, постоянное движение ресничек цилиндрического эпителия, неспецифические ингибиторы репликации вируса, которые содержатся в секрете дыхательных путей, макрофаги, захватывающие вирус, секреторный IgA. Факторами защиты являются также лектины С-типа (конагглютинин, манозосвязывающий белок, белки А и D сурфактанта), которые связываются с углеводами вируса, вызывают его агрегацию, приводя к опсонизирующему действию. Для того чтобы произошло инфицирование, вирус должен побороть факторы неспецифической резистентности дыхательных путей. Главной мишенью вируса являются клетки цилиндрического реснитчатого эпителия.

Переборов сопротивление ослабленных ресничек, возбудитель попадает в носоглотку и поддается действию высокоактивного секрета клеток. Белки секрета слизистых желез способны неспецифически ингибировать гемагглютинирующую и инфекционную активность вируса гриппа. Это действие обусловлено наличием в секрете гликопротеидов, которые содержат значительное количество N-ацетилнейраминовой кислоты. Существуют сезонные колебания содержания ингибиторов. Наиболее активны они в летне-осенний период, а в период эпидемии гриппа (зима) содержание ингибиторов снижается. Погибшие клетки отрываются и захватываются макрофагами, а также удаляются с секретом дыхательных путей. В подслизистом слое в результате высвобождения биологически активных веществ (гистамин, серотонин, кинины, простагландины) возникает реакция сосудов, форменных элементов крови, образование мелких тромбов и кровоизлияний, диапедез мо-нонуклеаров и нейтрофильных лейкоцитов, отек, местные нарушения метаболизма, изменения рН среды в кислую сторону и тому подобное. При этом патологический воспалительный процесс наиболее выражен в трахее и бронхах.

Наличие токсикоза при гриппе является существенной особенностью патогенеза. Симптомы интоксикации являются следствием резорбции токсичных субстанций вирусов, продуктов нарушенного обмена веществ, что прямо или опосредованно влияет на органы и системы. Вирус обладает токсическим действием на сосудистую систему, значительно повышая проницаемость и ломкость сосудов, что в комплексе с расстройствами микроциркуляции может приводить к развитию геморрагического синдрома. В возникновении циркуляторных расстройств, кроме прямого действия на сосудистую стенку, большое значение имеет нейротропность вируса. Характерны фазовые повреждения вегетативной нервной системы, касающиеся двух ее частей (симпатической и парасимпатической): гипертензия изменяется гипотензией, тахикардия — брадикардией, повышается секреция слизи в дыхательных путях, появляется потливость.

Проникая в более глубокие слои эпителия, вирус встречается со второй линией специфической обороны (интерферон, циркулирующие антитела классов IgM, IgG, IgE, температурная реакция). Механизмы иммунного ответа при гриппе представлены на рис. 3.

Рис. 3. Механизмы иммунного ответа при гриппе

При гриппе в ответ на инфицирование развиваются ранние цитокиновые реакции (РЦР) как наиболее быстрый ответ на вирус. Здесь мы имеем дело с естественным (врожденным) и наиболее распространенным вариантом РЦР на вирус гриппа как на внутриклеточного паразита, когда вирус сам включает систему интерферона, играя роль природного индуктора.

Каскад внутриклеточных событий, который наблюдается после внедрения вируса, обусловлен индукцией образования ИФН и в последующем разрушением вирусных информационных РНК, благодаря действию 2'-5'-олигоаденилсинтетазы и активации эндонуклеазы. Параллельно активированная протеинкиназа фосфорилирует а-субъединицу фактора, который инициирует трансляцию, что приводит к блокировке синтеза вирусных белков. Все это приводит к угнетению репродукции широкого спектра РНК и ДНК-содержащих вирусов за счет прямого внутриклеточного антивирусного эффекта. Эти явления происходят в течение первых часов после проникновения вируса гриппа в организм.

Интерфероны (в первую очередь ИФН-b или так называемые интерфероны I типа) имеют способность к активации естественных киллеров (ЕК) и цитотоксических лимфоцитов. В результате на этом этапе вирусного инфицирования локально осуществляются три взаимосвязанных действия:

  • внутриклеточная ингибиция интерферонами репродукции вирусов;
  • удаление посредством ЕК и ЦТЛ инфицированного материала;
  • защита вновь образованным интерфероном окружающих незараженных клеток от возможного заражения.

Интерферон распределяется по организму, связывается со специфическими рецепторами здоровых неповрежденных клеток и делает их невосприимчивыми к вирусу. С интерферонсвязанных неинфицированных клеток вокруг очага вирусной инфекции образуется заслон для последующего распространения инфекции. Кроме того, интерферон активирует почти все иммунные реакции (модуляция взаимосвязи между эндокринной и иммунной системами, активация макрофагов, повышение цитотоксичности, стимуляция экспрессии антигенов ГКГ I и II классов).

Однако описанные эффекты ИФН нередко являются недостаточными для завершения инфекционного процесса. Подобное имеет место при сниженном сопротивлении организма, дефектности системы ИФН и иммунитета, неблагоприятной экологической ситуации, действии стрессов и др.

В итоге развивается острое заболевание, которое сопровождается продукцией каскада ранних цитокинов (второй этап РЦР), активацией CD4+ и CD8+ Е-клеток с последующим развитием специфического, опосредствованного Т- и В-клеточного иммунитета. В этих случаях кроме ИФН 1-го типа синтезируются такие ранние цитокины, как фактор некроза опухоли, образуются интерлейкины (IL) 1b, 6, 10 и 15, а также трансформирующий фактор роста (TGF). На этом этапе уже отмечается вариабельность РЦР при разных вирусных инфекциях. Продукция ИФН-b считается ключевым доминантным признаком инфицирования вирусом.

ИФН а/b вызывает лейкопению, лимфаденопатию, миграцию клеток из красной пульпы селезенки в белую пульпу, то есть происходит перераспределение клеток для последующих иммунорегуляторных эффектов. ИФН а/b могут усилить специфический иммунный ответ при гриппе в период первичной инфекции за счет притягивания популяции В- и Е-клеток в места воспаления для антигенной презентации.

Первыми на инфекцию начинают реагировать макрофаги, в них происходит расщепление вирусной частицы на отдельные пептиды, которые продвигаются к поверхности клетки, здесь (на мембране макрофага) они контактируют с молекулами ГКГ I и II классов. ИФН, который секретируется ИЛ-1, усиливает экспрессию антигена ГКГ. Выраженное синергичное действие ИЛ-1 и ИЛ-2 способствует пролиферации предшественников Т-клеток в вилочковой железе. В очаг инфекции направляются Т-лимфоциты (хелперы), которым и предоставляются фрагменты антигена в комплексе с молекулами ГКГ. В активации Т-хелперов принимают участие ИЛ-4, ИЛ-6 и ФНО. Возможна ситуация, когда Т-лимфоциты способны непосредственно связывать вирусные антигены при участии антигенов II класса ГКГ. Потом подключаются ЦТЛ и NK-клетки, которые являются основными факторами ликвидации инфицированных вирусом клеток. Но роль CD8+ ЦТЛ двойственна: с одной стороны, они более эффективно по сравнению с другими субпопуляциями элиминируют вирус из отделов нижних дыхательных путей, с другой — усиливают реакции локального воспаления, вызывая в эксперименте синдром респираторного дистресс-синдрома. Результатом этого взаимодействия может стать победа вируса, тогда макроорганизм подключает факторы гуморального иммунитета (местного и общего).

Основу специфического местного иммунитета составляет секреторный IgA. В его синтезе принимают участие клетки реснитчатого эпителия, макрофаги, Т-лимфоциты, клетки секреторного эпителия. Макрофаги, локализованные в пространствах между эпителиальными клетками, захватывают обломки разрушенных вирусом клеток, метаболизируют их. Антигены, подготовленные макрофагами, активизируют Т- и В-лимфоциты, которые превращаются в плазмоциты, продуцируют антитела класса IgA. Выполняя важные эффекторные функции, IgA играет роль молекулы, которая регулирует функции клеток иммунной системы, в частности альвеолярных макрофагов, несущих рецепторы к Fc-фрагменту этого Ig. Так, иммунные комплексы, которые содержат антитела класса А, индуцируют в моноцитах-макрофагах синтез ФНО-а и СЗ-комплемента С. Секреторные IgA связывают вирус и препятствуют его выходу из организма в активной форме, что ограничивает циркуляцию вируса среди людей.

При первой встрече с вирусом через 3-5 дней образуются антитела класса IgM. Повышение их содержания свидетельствует об остроте инфекционного процесса. Высокое содержание Ig в крови является показателем устойчивости организма к инфекции. IgE — единственный тип антител, который вступает во взаимодействие с мембраной тучных клеток (в клинической картине наблюдаются приступы бронхоспазма).

Иммунные механизмы при первичной встрече с вирусом запоминаются организмом в виде информации, заложенной в клетки памяти (иммунологическая память), и при повторной встрече с вирусом той же антигенной разновидности иммунные реакции протекают быстрее и более эффективно. Создание иммунной памяти об антигене является целью применения вакцин. С их помощью создается и поддерживается защитная концентрация противогриппозных антител. Антитела, вступая во взаимосвязь с антигеном, образуют иммунные комплексы. Иногда вместе с защитными функциями они могут стать причиной тяжелых иммунопатологических состояний. Циркулируя по всему организму, они оседают в тканях, вызывая воспалительные реакции в капиллярах клубочков почек и синовиальных оболочек суставов. Частично вирус из организма выделяется почками, что, возможно, и обусловливает тот факт, что в эпителии дистальных канальцев, как и в эндотелии капилляров клубочков, оказывается значительное количество антигена вируса. Почками также выделяются иммунные комплексы, фрагменты клеток, что приводит к сенсибилизации тканей почки и впоследствии, через несколько недель и даже месяцев после перенесенного заболевания, может послужить причиной возникновения гломерулонефрита. Инициатором в этом случае может быть фактор, который имеет антигенную природу (например, переохлаждение).

Находясь в окружении антител, вирус может сохранять свою структуру и при разрушении комплекса опять поражать чувствительные клетки. Длительная циркуляция комплексов приводит к инфицированию все большего количества клеток, к поддержке инфекции и к персистенции. В данное время не исключается возможность длительной персистенции вируса гриппа в ЦНС по типу медленной инфекции с развитием впоследствии такого патологического состояния, как паркинсонизм. Это изменяет представление о гриппе как об острой инфекции. Установлено, что в 50% случаев антиген вируса гриппа сохраняется в периферических лимфоидных клетках и в крови до 120-200 и более дней.

При гриппе роль антигена могут играть не только структура вируса, но и измененные вирусом структуры клеток, и уже к ним синтезируются антитела, с которыми начинают вступать во взаимодействие нормальные клетки, в результате чего возникает угроза развития аутоиммунопатологического состояния.

Изменения во внутренних органах однотипны, обусловлены генерализованной вазодилятациеи. При массивной вирусемии, которая быстро развивается в первые часы болезни, может возникнуть инфекционно-токсический шок с развитием сердечно-сосудистой недостаточности. В его основе лежат несколько факторов: сосудистый (непосредственное действие вируса на сосуды с повышением их проницаемости, вазодилятациеи), геморрагический синдром с повреждением надпочечников и дефицитом гормонов, нарушение функции миокарда. У таких больных смерть может наступить в ближайшие часы от начала заболевания.

В результате токсического повреждения сосудистого аппарата ЦНС наступает гиперсекреция спинномозговой жидкости, нарушается ликвородинамика, что приводит к повышению внутричерепного давления, может наступить отек мозга. Чаще все-таки повреждаются мягкие мозговые оболочки, сосудистое сплетение, где можно выявить антигены вируса гриппа.

Инфекционно-алергический процесс после перенесенной гриппозной инфекции может возникнуть также в эндокарде. Изменения в миокарде, определенные на ЭКГ как миокардиодистрофия, обусловлены токсикозом и циркуляторными расстройствами.

В патогенезе отека легких имеют значение много факторов: нарушения гемодинамики, связанные с токсикозом, воспалительные процессы в бронхах и легких, снижение сократительной функции левого желудочка, что чаще развивается у лиц с сопутствующими заболеваниями сердечно-сосудистой системы. Необходимо подчеркнуть, что начальные стадии отека легких, на которых повреждается интерстициальная ткань, определяются лишь рентгенологически в виде нерезких, расплывчатых теней, которые сливаются и распространяются от корней к периферии легочных полей.

В механизмах устойчивости организма к генетически инородной информации принимают участие два основных феномена: наследственная резистентность и приобретенный иммунитет:

  • природная видовая наследственная резистентность, связанная с врожденной стойкостью организма, которая развивается с возрастом, к возбудителям инфекций, основанная на отсутствии чувствительных клеток или повышении их резистентности к репродукции вируса, а также на их биологической инактивации при участии интерферона, фагоцитарных факторов, нормальной температуры тела или неспецифических ингибиторов крови;
  • приобретенный иммунитет создается после болезни или искусственной иммунизации вакцинами.

Приобретенный иммунитет опирается на формирование местной секреторной защиты. Секреторный иммунитет предупреждает или смягчает тяжесть заболевания во входных воротах гриппозной инфекции при участии антител класса IgA, которые синтезированы в процессе кооперации между В-лимфоцитами и эпителиальными клетками. Секреторные антитела избирательно адсорбируются на поверхности клеток мерцательного эпителия, эффективно защищая их от инвазии вируса.

Длительность противогриппозного иммунитета ограничена не дву-мя-тремя годами, как это считалось бесспорным до 1977 г. (в этот год особенно тяжело болели молодые люди, рожденные после 1957 г., когда вирус A (H1N1) исчез из циркуляции и появился снова в 1977 г.). В случае возвращения к активной циркуляции уже известного подтипа через 20 и более лет — выявляется сохранение специфической невосприимчивости к возбудителю, который вернулся, у части населения, которая контактировала с ним раньше. Такая длительная иммунологическая память обусловлена, конечно, не антителами (их титры в крови падают ниже защитного порога через 6-12 месяцев, а в секрете дыхательных путей — еще быстрее). Длительный постинфекционный иммунитет обеспечивают клеточные механизмы (Т- и В-лимфоциты), в том числе местные, во входных воротах возбудителя инфекции. Существует четко выраженная корреляция невосприимчивости к гриппу с концентрацией антител в крови (в основном IgG) и в секрете дыхательных путей (IgA). Однако в частных случаях гриппом могут заболеть люди с высоким исходным уровнем гуморального иммунитета и не заболевают инфицированные лица с низким начальным титром антител. Такие примеры подчеркивают сложность и многогранность иммунной защиты организма, где роль отдельных факторов интегрирована в общем результате.

Между специфическими механизмами противогриппозного иммунитета существует распределение защитных функций:

  • секреторные антитела, которые подавляют репродукцию вируса во входных воротах инфекции, обеспечивают противоэпидемическую защиту, направленную на ограничение рассеивания и передачи возбудителя от инфицированных лиц здоровому окружению; в связи с широким диапазоном нейтрализующего эффекта секреторные антитела способны подавлять любые антигенные варианты вируса гриппа А в пределах своего подтипа;
  • сывороточные антитела нейтрализуют токсичные продукты вируса и регулируют клиническую тяжесть болезни;
  • клеточно-обусловленные факторы иммунитета устраняют резервуар вируса в инфицированных клетках, малодоступных влиянию антител.

Напряженность противовирусного иммунитета зависит от уровня циркулирующих антител и образования цитотоксических лимфоцитов. Цитотоксические лимфоциты вызывают лизис инфицированных вирусом клеток.

Повторное заболевание гриппом обусловлено высокой изменчивостью вируса гриппа и формированием иммунитета только к конкретному штамму, что и объясняет необходимость ежегодной вакцинации.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.