Химический состав вирусов и бактериофагов

Вирусы. Структура, химический состав вирусов.
Взаимодействие вирусов с клеткой. Культивирование вирусов.

Вирусы – мельчайшие формы жизни, имеющие неклеточное строение, облигатные внутриклеточные паразиты. Не имеют собственного биосинтетического и энергетического аппарата.

Вирусы. Уникальные свойства:

  1. Наличие одного типа нуклеиновой кислоты – ДНК или РНК.
  2. Отсутствие автономного обмена веществ.
  3. Дизъюнктивная (разобщенная) репродукция.

Вирусы являются самой многочисленной и разнообразной формой жизни на Земле, образуя отдельное царство.

Вирусы. Гипотезы происхождения:

  1. Являются потомками бактерий, претерпевшие регрессивную эволюцию.
  2. Являются потомками доклеточных форм жизни.
  3. Являются дериватами генетического материала клеток, который приобрел способность к самостоятельному функционированию.

Вирусы. Строение.

Вирусы имеют частицу, которая называется вирионом. Самые мелкие вирусы (парвовирус, полиовирус) имеют вирион, составляющий 20-25 ммк, у самого крупного (вирус натуральной оспы) – 450 ммк. Вирионы состоят из нуклеиновой кислоты и белка. Нуклеинова кислота расположена в центре вириона и является вирусным геномом. Она покрыта белковым чехлом – капсидом. Капсид построен из повторяющихся субъединиц – капсомеров – состоящих из одной или нескольких молекул белка.

Капсомеры уложены вокруг нуклеиновой кислоты в определенной порядке, образуя симметричные структуры в виде:

  1. 20-гранника – икосаэдра – кубический тип симметрии.
  2. Винтовой структуры – спиральный тип симетрии.
  3. Смешанный или сложный тип симметрии.

У просто устроенных вирусов имеется только НК и капсид (полиовирусы, аденовирусы). У сложных вирусов капсид покрыт дополнительной оболочкой – суперкапсидом или пеплосом, который состоит из липопротеинов или гликопротеинов. Между суперкапсидом и капсидом располоджен слой белка, который называется матриксом. Большинство вирусов имеет шаровидную форму (вирус герпеса, полиомиелита, гепатита В), некоторые вирусы имеют пулевидную форму (бешенство), палочковидную (табачной мозаики), форму сперматозоида (бактериофаги).

Вирусы. Классификация.

В основе классификации вирусов лежат следующие свойства:

  1. Тип нуклеиновой кислоты – ДНК или РНК.
  2. Строение нуклеиновой кислоты и стратегия генома.
  3. Наличие суперкапсида.
  4. Размер, тип симметрии капсида.
  5. Патогенность, тропность и способ передачи.
  6. Экология – класс поражаемых хозяев.

  1. Вирус полиомиелита – мелкий просто устроенный РНК содержащий нейротропный вирус человека, имеет кубический тип симметрии.
  2. Бактериофаг Т-2 кишечной палочки 2: крупный ДНК-содержащий вирус бактерий со сложным типом симметрии.

Вирусы делятся на семейства, подсемейства, роды и типы (что соответствует виду). Например: вирус иммунодефицита человека.

Вирусы. Строение генома.

Геном вируса может быть представлен либо молекулой ДНК, либо 1 или несколькими молекулами РНК.

Вирусы ДНК-содержащие, имеют геном:

  1. Однонитчатая линейная ДНК (парвовирусы).
  2. 2-нитчатая линейная (вирус герпеса).
  3. 2-нитчатая кольцевая (папилломавирус).
  4. 2-нитчатая кольцевая с дефектом одной цепи (гепатит В).

Вирусы РНК-содержащие, имеют геном:

  1. 1-нитчатая линейная + РНК (полиовирус).
  2. 1-нитчатая линейная -РНК (парагрипп).
  3. 1-цепочечная линейная фрагментированная-РНК (грипп).
  4. 2-цепочечная линейная фрагментированная (ротавирус).

Геном вируса кодирует следующие виды белков:

  1. Структурные. Белки капсида, белки суперкапсида, некоторые ферменты.
  2. Неструктурные. Ферменты репродукции (ДНК- и РНК-полимеразы, белки регуляторы, ферменты, белки (протеазы).

Вирусы. Функции белков:

  1. Защитная
  2. Антигенная
  3. Рецепторная
  4. Морфопоютическая
  5. Регуляторная
  6. Ферментативная

Вирусы. Репродукция.

Вирусы имеют цикл репродукции, который состоит из ряда последовательных событий:

  1. Специфическая адсорбция вируса на поверхности клет
  2. Проникновение внутрь клетки
  3. Дезинтеграция вириона, освобождение НК.
  4. Синтез вирусных компонентов
  5. Сборка вириона.
  6. Выход из клетки.

Адсорбция.Осуществляется за счет специфического взаимодействия рецептора вириона с комплементарными антирецепторами мембраны клетки хозяина.

Проникновение.Пенетрация осуществляется путем эндоцитоза – образуется эндоцитарная вакуоль, содержащая вирион.

Дезинтеграция вириона осуществляется клеточными ферментами, разрушающими капсид. Вирус на время как бы исчезает. Эта стадия называется эклипс.

Вирусы. Синтез вирусных компонентов.

Реализация вирусной генетической информации происходит по следующим формулам:

У ДНК-содержащих вирусов:

1. вДНК – иРНК – белок – сборка
вДНК

2. в-ДНК – иРНК – белок – сборка (гепатит В)
кРНК – вДНК

+вРНК
+вРНК – кДНК – иРНК – белок – сборка
+вРНК

У некоторых вирусов в цикле репродукции имеется стадия интеграции генома в геном клетки хозяина (вирусы герпеса, гепатита В, ВИЧ). Интегрированная вирусная ДНК называется провирусом.

Ферменты, осуществляющие синтез вирусных нуклеиновых кислот:

  1. ДНК-зависимая ДНК-полимераза.
  2. ДНК-зависимая РНК-полимераза.
  3. РНК-зависимая ДНК-полимераза (обратная транскриптаза).

Вирусы. Сборка вирионов и выход из клетки.

Для вирионов характерна дизъюнктивная репродукция. Т.е. синтез белков и НК происходит разобщенно. Для вирусных компонентов характерно белок-белковое узнавание и белок-нуклеиновое узнавание, в результате которого происходит самосборка вириона. Сборка может происходить в ядре клетки (аденовирус), либо в цитоплазме (полиовирус). Вирусы, имеющие суперкапсид, формируются, захватывая часть ядерной мембраны или клеточных мембран.

Выход вирионов из клетки может осуществляться двумя путями:

  1. Деструкция клетки (литические вирусы).
  2. Путем почкования через мембрану без деструкции клетки (вирус гепатита В).

Вирусы. Культивирование.

  1. Путем заражения лабораторных животных.
  2. Путем заражения куриных эмбрионов.
  3. Путем заражения клеточных культур, которые получают из норманых или злокачественных клеток человека или животных

Бактериофаги

Особое значение в бактериологии имеют вирусы бактерий или бактериофаги.

Бактериофаги. Морфология.
Внешне большинство бактериофагов напоминают сперматозоиды, но встречаются и другие формы. Выделяют 5 основных типов бактериофагов в зависимости от типа нуклеиновых кислот (ДНК-содержащие и РНК-содержащие фаги), строения, типа симметрии:
1. Нитевидные ДНК-содержащие фаги, которые лизируют клетки бактерий, несущих F-плазмиду.
2. Фаги с аналогом отростка, РНК-содержащие И однонитевой ДНК-фаг.
3. Фаги Т3 и Т7 с коротким отростком.
4. Фаги с несокращающимся чехлом и 2-нитевой ДНК.
5. ДНК-содержащие фаги с сокращающимся чехлом отростка, заканчивающимся базальной пластиной.

Наиболее полно описаны так называемые Т-четные фаги или Т-фаг (Т- типовые).
Головка Т-фагов имеет кубический тип симметрии, довольно ригидна, состоит из белковой оболочки, построенной из отдельных субъединиц и заключенного в ней ДНКового генома, размеры головки около 100нм. Геном фагов образован спирально упакованной двойной нитью ДНК.
Отросток (хвост) Т-фагов имеет длину около 100 нм, включает полый стержень, сконструированный по типу спиральной симметрии и мократительный чехол, присоелдиняющийся к воротничку, окружающему стержень головки. Чехол образован 120-140 белковыми молекулами.

По сравнению с вирусами человека бавктериофаги более устойчивы к различным физическим и химическим воздействиям. Они хорошо переносят высокие температур (50-60 С), действие дизинфицирующих средств, УФ-облучение в низких дозах.

Бактериофаги. Взаимодействие с бактериальной клеткой
Строго специфично, т.е. они способны инфицировать бактерии только определенного вида. Происходит в несколько этапов.
Адсорбция на бактерии происходит за счет наличия на поверхности бактериальной специфических рецепторов для бактериофага. Некоторые фаги адсорбируются на половых ворсинках. На бактериях, лишенных клеточной облочки, адсорбция не происходит.
Внедрение вирусной ДНК (инъекция фага). После адсорбции происходит расщепление фрагмента клеточной стенки лизоцимом, который содержится в капсиде фага. Одновременно в чехле высвобождаются ионы Са, активирующие АТФазу, в результате чехол сокращаектся и стержень хвоста вталкивается через цитоплазматическую мембрану в клетку. Затем вирусная ДНК впрыскивается в цитоплазму.

Бактериофаги. Репродукция.

Происходит в 3 этапа: синтез фаговых белков, затем репликация нуклеиновых кислот, сборка фага.
Выход дочерних популяций фага. После образования потомства (10-200 из одной инфицированной частицы) клетка хозяина лизируется, высвобождая дочернюю популяцию. Это так называемый литический или продуктивный тип инфекции. Характерен для вирулентных фагов.
Существует другой тип взаимодействия, который называют интегративным или интегративной инфекцией. Вызывают его умеренные фаги. В случае интегративной инфекции ДНК вируса встраивается в геном бактериальной клетки – образуется профаг. Репликация вирусной ДНК происходит вместе с бактериальной, полноценного синтеза вирусспецифических белков и НК фактически не происходит. Бактерия приобретает новые свойства – происходит лизогенная (фаговая) конверсия. Бактерии, содержащие профаг, называют лизогенными. Новые свойства бактериальной клетки: продукция экзотоксинов и адгезинов, т.е. в результате фаговой конверсии могут усилиться вирулентные свойства бактерий. При воздействии на лизогенные культуры ряда физических и химических факторов возможна так называемая индукция фага, т.е. стимуляция вирулентных свойств его и переход на литический цикл развития.

Бактериофаги. Практическое применение.
Фаготипирование и дифференцировка бактериальных культур.
Эпидемиологические наблюдения – определение количества бактериофагов в водоемах позволяет оценить количество патогенных бактерий.
Применение с терапевтической целью. Применяют дизентерийные, сальмонеллезные, стафилококковые бактериофаги, строго специфическое действие бактериофагов позволяет отказаться от антибиотиков в некоторых случаях, т.е. снизить побочные действия от антибиотикотерапии.

Открытие вирусов

В 1892 году Д.И. Ивановский (см. Рис. 1), изучая мозаичную болезнь табака (см. Рис. 2), установил, что причиной заболевания является некое инфекционное начало, содержащееся в листьях больных растений, которое проходит через фильтр, задерживающий обыкновенные бактерии. Если профильтрованный сок внести в листья здоровых растений, то они также заболевают мозаичной болезнью.


Рис. 1. Д.И. Ивановский


Рис. 2. Мозаичная болезнь табака

В 1898 году независимо от Ивановского аналогичные результаты получил голландский микробиолог М. Бейеринк. Однако он предположил, что мозаичную болезнь табака вызывают не мельчайшие бактерии, а некое жидкое заразное начало, которое он назвал фильтрующим вирусом.

Размеры вирусов определяются нанометрами (20-200 нм), поэтому их изучение началось после открытия электронного микроскопа. В настоящее время описаны вирусы практически всех групп живых организмов.

Строение вирусов

Вирусы – неклеточные формы жизни. Они состоят (см. Рис. 3) из фрагмента генетического материала (РНК или ДНК), составляющего сердцевину вируса, и защитной оболочки, которая называется капсид. У некоторых вирусов (герпес, грипп) есть дополнительная липопротеидная оболочка – суперкапсид, которая возникает из плазматической мембраны клетки-хозяина.


Рис. 3. Строение вируса

Вирусы не способны к самостоятельной жизнедеятельности. Они могут проявлять свойства живого, только попав в клетку-хозяина. Они используют потенциал и энергию этой клетки для создания своих новых вирусных частиц, следовательно, вирусы являются внутриклеточными паразитами.

Размножение вирусов

Обычно вирус связывается с поверхностью клетки-хозяина и проникает внутрь. Каждый вирус ищет своего хозяина, то есть клетки строго определенного вида. Например, вирус – возбудитель гепатита (желтуха) проникает и размножается только в клетках печени, а вирус эпидемического паротита (свинка) – только в клетках околоушных слюнных желез человека.

Проникнув внутрь клетки-хозяина, вирусная ДНК или РНК начинает взаимодействовать с ее генетическим аппаратом таким образом, что клетка начинает синтезировать белки, свойственные вирусу (см. Рис. 4).


Рис. 4. Схема репродукции вируса

При заражении ретровирусом (например, вирус иммунодефицита человека (ВИЧ)), у которого в качестве генетического материала используется молекула РНК, наблюдается другая картина. При попадании ретровируса в клетку-хозяина происходит обратная транскрипция. То есть на основе вирусной РНК синтезируется вирусная ДНК, которая встраивается в ДНК человека. Такой тип взаимодействия вируса с клеткой называется интегративным, а встроенная в состав хромосомы клетки ДНК вируса называется провирусом. Далее провирус реплицируется (удваивается) в составе хромосомы и переходит в геном дочерних клеток. Однако под влиянием некоторых физических и химических факторов провирус может выщепляться из хромосомы клетки и переходить к продуктивному типу взаимодействия, то есть синтезировать новые вирусные частицы.

При заражении ВИЧ человек чувствует себя здоровым, пока вирусный генетический материал встроен в хромосому человека. Однако при выщеплении этого вирусного генетического материала из клетки она начинает образовывать новые вирусные частицы, вследствие чего развивается смертельное заболевание – синдром приобретенного иммунодефицита (СПИД).

Вирусы являются возбудителями большого количества заболеваний человека: корь, грипп, оспа, краснуха, энцефалит, свинка, гепатиты, СПИД. Известен также целый ряд заболеваний растений, вызываемых вирусами, например мозаичная болезнь табака, томатов, огурцов или скручивание листьев картофеля. Всего описано около 500 видов вирусов, поражающих клетки позвоночных животных, и около 300 вирусов растений. Некоторые вирусы участвуют в злокачественном перерождении клеток и тем самым провоцируют онкологические заболевания.

ДНК- и РНК-содержащие вирусы

В зависимости от содержащегося генетического материала вирусы подразделяются на ДНК-содержащие и РНК-содержащие.

Одноцепочные РНК-содержащие вирусы подразделяются на:

1. Плюс-нитевые (положительные). Плюс-нить РНК этих вирусов вы­полняет наследственную (геномную) функцию и функцию информационной РНК (иРНК).

2. Минус-нитевые (отрицательные). Минус-нить РНК этих вирусов выпол­няет только наследственную функцию.

К РНК-содержащим вирусам относятся более
вирусов, вызывающих респираторные заболевания, а также вирус гриппа, кори, краснухи, свинки, ВИЧ. Также существует специфическая группа вирусов – арбовирусы, которые переносятся членистоногими.

Двухцепочные ДНК-содержащие вирусы вызывают такие заболевания, как папиллома человека или герпес, гепатит В (гепатит А и гепатит С вызывается РНК-содержащими вирусами).

ДНК-содержащие вирусы поражают также растения. Они вызывают, например, золотую мозаику бобов или полосатость у кукурузы.

Вирус гепатита С

По своему строению вирус гепатита С – это РНК-содержащий вирус, имеющий сферическую форму, сложно устроенный (см. Рис. 5).

В качестве генетического материала такой вирус содержит линейную однонитчатую молекулу РНК.


Рис. 5. Гепатит С

Вопреки бытующим предрассудкам, подцепить вирус гепатита C невозможно через социальные контакты (поцелуи, объятия), через продукты или воду, через грудное молоко. Вы ничем не рискнете, если разделите с носителем вируса трапезу или напитки. Заразиться гепатитом C можно при контакте с кровью инфицированного человека либо половым путем.

В настоящее время для лечения гепатита С используют два препарата: Интерферон альфа и Рибавирин.

Бактериофаги


Рис. 6. Бактериофаг (Источник)

Особую группу вирусов составляют бактериофаги (или просто фаги), которые заражают бактериальные клетки (см. Рис. 6). Фаг укрепляется на поверхности бактерии при помощи специальных ножек и вводит в ее цитоплазму полый стержень, через который проталкивает внутрь клетки свою ДНК или РНК. Таким образом, генетический материал фага попадает внутрь бактериальной клетки, а капсид остается снаружи. В цитоплазме начинается репликация генетического материала фага, синтез его белков, построение капсида и сборка новых фагов. Уже через 10 мин после заражения в бактерии формируются новые фаги, а через полчаса бактериальная клетка разрушается, и из нее выходят около 200 заново сформированных вирусов – фагов, способных заражать другие бактериальные клетки (см. Рис. 7). Некоторые фаги используются человеком для борьбы с болезнетворными бактериями, вызывающими холеру, дизентерию, брюшной тиф.


Рис. 7. Схема размножения бактериофага (Источник)

Список литературы

  1. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс Дрофа, 2005.
  2. Биология. 10 класс. Общая биология. Базовый уровень / П.В. Ижевский, О.А. Корнилова, Т.Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.
  3. Беляев Д.К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.
  4. Агафонова И.Б., Захарова Е.Т., Сивоглазов В.И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

Бактериофаги. История открытия.

Бактериофаги (от «бактерии и греч. phagos - пожиратель) - вирусы бактерий, обладающие способностью специфически проникать в бактериальные клетки, peпродуцироваться в них и вызывать их растворение (лизис).

В 1896 г. русский бактериолог Владимир Аронович Хавкин обнаружил антимикробную активность водных образцов из рек Индии. Эти препараты, предварительно пропущенные через бактериальные фильтры, ингибировали рост культуры холерного вибриона.

В 1898 г. русский Н.Ф. Гамалея наблюдал растворение культуры возбудителя сибирской язвы под действием фильтрата этого микроорганизма и назвали его (фильтрат) бактериолизином.

В 1915 г. англичанин Эдвард Творт описал агент, проходящий через бактериальный фильтр и вызывающий лизис стафилококков.

В дальнейшем выяснилось, что бактериофаги широко распространены в природе. Их обнаружили в воде, почве, пищевых продуктах, различных выделениях из организма людей и животных, т.е. там, где встречаются бактерии. В настоящее время эти вирусы выявлены у большинства бактерий, как болезнетворных, так и неболезнетворных, а также ряда других микроорганизмов (например, грибов). Поэтому в широком смысле их стали называть просто фагами.

2.Роль бактериофагов в биосфере.

Бактериофаги представляют собой наиболее многочисленную, широко распространённую в биосфере и, предположительно, наиболее эволюционно древнюю группу вирусов. Приблизительный размер популяции фагов составляет более 1030 фаговых частиц.

В природных условиях фаги встречаются в тех местах, где есть чувствительные к ним бактерии. Чем богаче тот или иной субстрат (почва, выделения человека и животных, вода и т. д.) микроорганизмами, тем в большем количестве в нём встречаются соответствующие фаги.

Действительно, бактериофаги представляют собой один из основных подвижных генетических элементов. Посредством трансдукции (процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом) они привносят в бактериальный геном новые гены. Было подсчитано, что за 1 секунду могут быть инфицированы 1024 бактерий. Это означает, что постоянный перенос генетического материала распределяется между бактериями, обитающими в сходных условиях.

Высокий уровень специализации, долгосрочное существование, способность быстро репродуцироваться в соответствующем хозяине способствует их сохранению в динамичном балансе среди широкого разнообразия видов бактерий в любой природной экосистеме. Когда подходящий хозяин отсутствует, многие фаги могут сохранять способность к инфицированию на протяжении десятилетий, если не будут уничтожены экстремальными веществами либо условиями внешней среды.

3.Строение.

На рис.2 схематически изображена тонкая структура фаговой частицы.


Рис.2. Схема строения фаговой частицы.

Химический состав.

Фаги состоят из двух основных химических компонентов - нуклеиновой кислоты (ДНК или РНК) и белка. У фагов, имеющих форму сперматозоида, двунитчатая ДНК плотно упакована в виде спирали внутри головки.

Белки входят в состав оболочки (капсида), окружающей нуклеиновую кислоту, и во все структурные элементы хвостового отростка. Структурные белки фага различаются по составу полипeптидов и представлены в виде множества идентичных субъединиц, уложенных по спиральному или кубическому типу симметрии. Кроме структурных белков, у некоторых фагов обнаружены внутренние (геномные) белки, связанные с нуклеиновой кислотой, и белки-ферменты (лизоцим, АТФ-аза), участвующие во взаимодействии фага с клеткой.

Резистентность.

Фаги более устойчивы к действию химических и физических факторов, чем бактерии. Ряд дезинфицирующих веществ (фенол, этиловый спирт, эфир и хлорoформ) не оказывают существенного влияния на фаги. Высокочувствительны фаги к формалину и кислотам. Инактивация большинства фaгов наступает при температуре 65-70˚С. Длительное время они сохраняются при высушивании в запаянных ампулах, замораживании при температуре -185˚C в глицерине.

Морфология бактериофагов.

Бактериофаги различаются по химической структуре, типу нуклеиновой кислоты, морфологии и характеру взаимодействия с бактериями. По размеру бактериальные вирусы в сотни и тысячи раз меньше микробных клеток.

Применение современных электронных микроскопов, а также усовершенствование методов приготовления препаратов для электронной микроскопии позволили более детально изучить тонкую структуру фагов. Оказалось, что она весьма разнообразна и у многих фагов более сложна, чем структура вирусов растений и ряда вирусов человека и животных.


Рис.1 Морфологические типы фагов.

I.По форме частиц фаги делятся на шесть основных морфологических типов:

1) палочковидные или нитевидные фаги;

Фаги первого морфологического типа - палочковидные или нитевидные - выявлены у кишечной, синегнойной, чудесной палочек и других бактерий. Средние размеры их: длина - от 7000 до 8500 А, ширина - от 50 до 80 А . Эти фаги отличаются от всех остальных не только большой специфичностью, но и рядом других важных свойств.

2) фаги, состоящие из одной головки, без отростка;

Фаги второго морфологического типа. Частица их состоит из одной головки гексагональной (шестигранной) формы на плоскости. Частицы очень мелкие, средний размер их 230-300 А в диаметре .

3) фаги, состоящие из головки, на которой имеется несколько небольших выступов;

У фагов третьего морфологического типа форма и размеры головки такие же, как у фагов второго типа, но у их головок имеются обычно несколько очень коротких выступов. Возможно, эти выступы являются аналогами отростков.

Фаги второго и третьего морфологических типов отличаются постоянством формы и размеров, независимо от того, против каких микроорганизмов они активны. Эти фаги относятся к мелким формам.

4) фаги, состоящие из головки и весьма короткого отростка;

Фаги четвертого морфологического типа. Частица состоит из головки, размеры которой варьируют от 400 до 640 А в диаметре, и очень короткого отростка. Длина и ширина отростка от 70 до 200 А.

5) фаги, имеющие головку и длинный отросток, чехол которого не может сокращаться;

Фаги пятого морфологического типа наиболее широко распространены. Головка у частиц гексагональной, формы различных размеров - от 500 до 4250 А в диаметре. Размеры отростка: длина - от 1700 до 5000 А, ширина - от 70 до 120 А. Чехол отростка не способен сокращаться.

Эта статья, словно доклад по биологии для 5 класса о вирусах бактериофагах, поможет читателю узнать основную информацию о данных внеклеточных формах жизни. Здесь мы рассмотрим их таксономическое расположение, особенности строения и жизнедеятельности, проявлении себя при взаимодействии с бактериями и т. д.

Введение


Всем известно, что универсальным представителем единицы жизни на планете Земля является клетка. Однако рубеж между девятнадцатым и двадцатым веками стал эпохой, во время которой был открыт целый ряд болезней, поражающих животных, растения и даже грибы. Анализируя данное явление и учитывая общую информацию о заболеваниях человека, ученые поняли, что существуют организмы, которые могут иметь природу неклеточного характера.

Такие существа имеют чрезвычайно малые размеры, а потому способны проходить сквозь мельчайший фильтр, не задерживаясь при этом там, где даже самая маленькая клетка могла бы остановиться. Это обусловило открытие вирусов.

Общие данные

Прежде чем рассмотреть представителей вирусов – бактериофагов, - ознакомимся с общими сведениями о данном царстве таксономической иерархии.

Вирусная частичка имеет мельчайшие размеры (20-300 нм) и симметричное структурирование. Строится из постоянно повторяющихся компонентов. Все организмы вирусной природы являются фрагментом РНК или ДНК, заключаются в особую оболочку из белка, называемую капсидом. Они не обладают способностью самостоятельно функционировать и поддерживать жизнедеятельность, находясь вне другой клетки. Проявление свойств живых существ им присуще лишь после внедрения в другой организм, при этом сам вирус будет использовать ресурсы захваченной им клетки для поддержания стабильности в собственном состоянии. Из этого следует, что данный домен таксономии представлен в виде паразитической, внутриклеточной формы жизни. Существуют вирусы, захватывающие участки мембран клетки, в которой они развивались и жили. Они образуют вокруг таких мест еще одну оболочку, покрывающую капсид.


Как правило, вирусы образуют связь с поверхностью клетки, в которой они паразитируют. Далее вирус проникает внутрь и начинает поиск конкретной структуры, которую он способен поразить. Например, возбудители гепатита функционируют и обитают лишь в клеточных единицах печени, а паротит старается проникнуть в околоушные железы.

ДНК (РНК), принадлежащая вирусу, попав внутрь клетки-носителя, начинает взаимодействовать с аппаратом генетической наследственности так, что сама клетка начинает неконтролируемый процесс синтеза специфического ряда белков, зашифрованных в нуклеиновой кислоте самого возбудителя болезни. Далее происходит репликация, выполняемая непосредственно уже самой клеткой, и таким образом начинается процесс сборки новой вирусной частички.

Бактериофаг

Кто такие вирусы бактериофаги? Это особая форма жизни на Земле, которая избирательно проникает в клетки бактерий. Размножение чаще всего происходит внутри носителя, а сам процесс приводит к лизису. Рассматривая строение вирусов на примере бактериофагов, можно заключить, что они состоят из оболочек, образованных белками, и имеют аппарат по воспроизведению наследственности в виде одной цепочки РНК или двух цепей ДНК. Общее значение числа бактериофагов приблизительно соответствует всей численности бактериальных организмов. Данные вирусы принимают активное участие в химическом обороте веществ и энергии в природе. Обуславливают множество проявлений признаков у бактерий и микробов, развитых или развивающихся в ходе эволюции.

История открытия


Исследователь бактериологии Ф. Туорт создал описание инфекционного заболевания, которое предложил в статье, выпущенной в 1915 году. Данная болезнь поражала стафилококки и могла проходить сквозь любые фильтры, а также могла транспортироваться из одной колонии клеток в другие.

Микробиолог родом из Канады Ф. Д'Эрелль совершил открытие бактериофагов в сентябре 1917 года. Их обнаружение было сделано независимо от трудов Ф. Туорота.

В 1897 г. Н. Ф. Гамалея стал наблюдателем явления лизиса бактерии, который протекал под воздействием процесса прививки агента.

Вирусы бактерий – бактериофаги-паразиты, играющие огромную роль в процессе патогенеза инфекций. Они заняты обеспечением выздоровления организма многоклеточного типа от многих болезней, и потому образуют специфический тип иммунной системы. Впервые об этом заговорил Д'Эрелль, а позднее развил это в учение. Данное положение привлекло множество ученых, которые начали исследовать эту область и пытаться найти ответы на такие вопросы, как: какое клеточное строение (кристаллы) имеют бактерии-вирусы бактериофаги? Каковы процессы внутри них, их дальнейшая судьба и развитие? Все это и многое другое привлекло внимание множества исследователей.


Значение

Строение вирусов на примере бактериофага может нам о многом сказать, особенно для взаимодействия с другой информацией, которой располагает о них человек. Например, они являются, предположительно, самой древней формой вирусных частиц. Количественный анализ указывает нам на то, что их популяция имеет более 10 30 частиц.

В природе их можно обнаружить там же, где обитают и бактерии, к которым они могут проявлять чувствительность. Так как рассматриваемые организмы определяются по месту обитания, предпочтениями бактерий, которых они поражают, то, следовательно, лизирующие почвенных бактерий (фаги) будут жить в почве. Чем больше в субстрате содержится микроорганизмов, тем больше там и необходимых фагов.

В действительности каждый бактериофаг воплощает в себе одну из основных элементных единиц генетической подвижности. Используя трансдукцию, они обуславливают возникновение новых генов в наследственном материале бактерии. За секунду может произойти инфицирование около 10 24 бактериальных клеток. Такая форма ответа на вопрос о том, какие вирусы называются бактериофагами, открыто показывает нам способы распределения наследственной информации, происходящие между бактериальными организмами из общей среды обитания.

Особенности строения

Отвечая на вопрос, какое строение имеет вирус бактериофаг, можно заключить, что их можно различать в соответствии с химической структурой, по виду нуклеиновой кислоты (н. к.), морфологическим данным и форме взаимодействия с бактериальными организмами. Величина такого организма может быть в несколько тысяч раз меньше самой микробной клетки. Типичный представитель фагов образован головкой и хвостом. Длина хвостового отдела может в два-четыре раза превышать величину диаметра головки, в которой, кстати говоря, располагается генетический потенциал, принявший форму цепи ДНК или РНК. Здесь также находится фермент – транскриптаза, погруженный в неактивное состояние и окруженный оболочкой из белков или липопротеинов. Она обуславливает хранение генома внутри клетки и называется капсидом.

Особенности строения вируса бактериофага определяют его хвостовой отсек как трубку из белков, которая служит продолжением оболочки, составляющей головку. В области хвостового основания располагается АТФаза, регенерирующая энергетические ресурсы, расходуемые на процесс инъекции генетического материала.

Систематические данные


Бактериофаг – это поражающий бактерии вирус. Именно так его классифицирует систематика в таблице иерархического порядка. Присвоение им звания в этой науке было обусловлено обнаружением огромного количества данных организмов. В настоящее время эти вопросы решает МКТВ (ICTV). В соответствии с Международными стандартами классификации и распределением таксонов среди вирусов, бактериофаги различают по типу содержащейся в них нуклеиновой кислоты или морфологическим особенностям.

На сегодня можно выделить 20 семейств, среди которых лишь 2 принадлежит к содержащим РНК и 5 с наличием оболочки. Среди ДНК-вирусов лишь у 2 семейств имеется одноцепочечная форма генома. 9 вирусов, содержащих ДНК (геном представляется нам в виде кольцевой молекулы дезоксирибонуклеиновой кислоты) и другие 9 с линейной фигурой. 9 семейств являются специфичными по отношению к бактериям, а другие 9 - к археям.

Влияние на бактериальную клетку

Вирусы бактериофаги, в зависимости от характера взаимодействия с клеткой бактерии, могут различаться на фаги вирулентного и умеренного типа. Первые способны увеличивать свое количество лишь при помощи литических циклов. Процессы, при которых происходит взаимодействие вирулентного фага и клетки, состоит из адсорбции на клеточной поверхности, внедрения в клеточную структуру, процессов по биосинтезу элементов фагов и их приведению в функциональное состояние, а также выход бактериофага за пределы хозяина.

Рассмотрим описание вирусов бактериофагов, опираясь на их дальнейшее воздействие в клетке.

Инъекция, совершенная фагом, вызывает полное перестроение всех метаболических процессов. Синтез бактериальных белков, а также РНК и ДНК, завершается, а сам бактериофаг начинает процесс транскрибирования благодаря деятельности личного фермента, называемого транскриптазой, который активируется лишь после проникновения в клетку бактерии.

Как ранние, так и поздние цепи информационной РНК синтезируются после поступления их на рибосому клетки-носителя. Там же происходит процесс синтеза таких структур, как нуклеаза, АТФаза, лизоцим, капсид, отросток хвоста и даже ДНК-полимераза. Процесс репликации протекает в соответствие с полуконсервативным механизмом и осуществляется лишь при наличии полимеразы. Поздние белки образуются после завершения процессов по репликации дезоксирибонуклеиновой кислоты. После этого начинается финальная стадия цикла, в котором происходит фаговое созревание. А также может происходить объединение с белковой оболочкой и образование зрелых частичек, готовых к инфицированию.

Циклы жизни


Вне зависимости от строения вируса бактериофага, все они имеют общую характеристику жизненных циклов. В соответствии с умеренностью или вирулентностью оба типа организмов схожи друг с другом в начальных стадиях влияния на клетку с одинаковым циклом:

  • процесс адсорбции фага на особом рецепторе;
  • введение инъекции нуклеиновых кислот в жертву;
  • стартует совместный процесс репликации нуклеиновых кислот, как фага, так и бактерии;
  • процесс клеточного деления;
  • развитие лизогенным или литическим путем.

Умеренный бактериофаг сохраняет режим профага, следует лизогенному пути. Вирулентные представители развиваются в соответствие с литической моделью, в которой имеется ряд последовательных процессов:

Способы эксплуатации

Вирусы бактериофаги находят свое широкое применение в терапии антибактериального типа, которая служит альтернативой антибиотикам. Среди организмов, которые могут быть применимы, чаще всего выделяют: стрептококковых, стафилококковых, клебсиеллезных, коли, протейных, пиобактериофагов, полипротейновых и дизентерийных.


На территории РФ в медицинских целях зарегистрировано и применимо на практике тринадцать медикаментозных веществ, основанных на фагах. Как правило, такие способы борьбы с инфекциями применяются в том случае, когда традиционная форма лечения не приводит к значительным изменениям, что обуславливается слабой чувствительностью возбудителя к самому антибиотику или полному сопротивлению. На практике использование бактериофагов приводит к быстрому и качественному достижению желаемого успеха, но для этого необходимо присутствие биологической мембраны, укрытой слоем полисахаридов, сквозь которые антибиотикам проникнуть не удается.

Терапевтический тип применения представителей фагов не находит поддержания на Западе. Однако часто применяется для борьбы с бактериями, вызывающими пищевое отравление. Многолетние опыты по исследованию деятельности бактериофагов показывают нам, что наличие, например, дизентерийного фага в общем пространстве городов и сел обуславливает подвергание пространства профилактическим мерам.

Инженеры-генетики эксплуатируют бактериофагов, как векторы, при помощи которых осуществляется перенос участков ДНК. А также с их участием протекает передача геномной информации между взаимодействующими клетками бактерий.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.