Действие ультразвука на вирусы


Микитин И. Л., Карапетян Г. Э., Винник Ю. С., Якимов С. В., Кириченко А. К.,

В процессе эволюционного развития биообъектов на формирование их биологических свойств оказывали влияние многие абиотические факторы, в том числе природные фоновые излучения. В последние десятилетия в связи с резко возросшей антропогенной и техногенной нагрузкой произошло резкое повышение уровня абиотических излучений и, соответственно, увеличилось влияние этих факторов на биоклетки, что с большой вероятностью может способствовать фенотипическим изменениям биологических свойств, вплоть до развития мутаций [13, 112, 139]. Поэтому, в современной микробиологии актуальными являются вопросы изучения особенностей и механизмов влияния внешних физических факторов на состояние микроорганизмов, в частности на бактерии, для возможного использования этих воздействий в решении прикладных задач и внедрения новых технологий в медицине и биологии.

Одним из факторов, способным влиять на функциональное состояние микроорганизмов, является ультразвук (УЗ). Несмотря на то, что УЗ давно используют в различных отраслях науки, техники, медицины его влияние на микроорганизмы требует более детального изучения [20, 22, 121, 143]. Ультразвуковые волны обладают большой механической энергией и вызывают ряд физических, химических и биологических явлений. Поэтому не случаен интерес к изучению влияния и механизмам действия этого физического фактора на биологические объекты.

Ультразвуковыми называются упругие акустические волны, способные распространяться в материальных средах (твердых, жидких, газообразных). Нижняя граница УЗ лежит в области 16–20 кГц, верхняя достигает сотен мегагерц. Обе границы достаточно условны и находятся за пределами слышимости человека. Упругость обеспечивает возвращение в исходное положение частиц среды, смещенных под воздействием внешних сил. Частицы среды при этом не переносятся в направлении распространения волн, а лишь колеблются около положения равновесия. Возмущение от частиц, колеблющихся в каждом слое около положения равновесия, передается от слоя к слою по направлению распространения волны. Таким образом, в акустической волне происходит перенос энергии без переноса вещества. Волны бывают продольными, если направление колебаний частиц совпадает с направлением распространения волн, и поперечными, если эти направления взаимно перпендикулярны [70, 74]. В газообразных и жидких средах, в мягких тканях макроорганизмов и в клетках микроорганизмов, состоящих на 75 % из воды, распространяются продольные волны.

При прохождении УЗ в биологических объектах частицы среды совершают интенсивные колебательные движения с большими ускорениями, при этом на расстояниях, равных половине длины звуковой волны, в облучаемой среде могут возникать разности давлений от единиц до десятков атмосфер. Столь интенсивные воздействия на структуру биологических объектов приводят к различным эффектам, физическая природа которых связана с действием факторов, сопутствующих распространению ультразвука в среде: механического, теплового, физико-химического.

Одним из механизмов воздействия УЗ на биообъекты являются звукохимические реакции. Химические превращения наблюдаются при интенсивности УЗ от долей Вт/см2 до десятков или сотен Вт/см2 на частотах от 1 кГц до нескольких МГц. Так как эти частоты на много порядков меньше собственных частот колебаний молекул, химических изменений в системе вследствие резонансного поглощения УЗ не наблюдается и варьирование частоты в указанном диапазоне мало сказывается на характере возникающих в биосистеме реакций [237, 227].

Биологическое действие ультразвуковых волн связывают в большей степени с явлением кавитации. Кавитацией называется процесс образования в жидкой среде полостей, заполненных парами самой жидкости, которые возникают под действием больших разрывающих напряжений и в следующее мгновенье захлопываются, сопровождаясь большими давлениями и локальным нагревом среды [73, 93, 152]. Явление кавитации носит локальный характер и не перемещается в среде. Импульсы давления, возникающие при смыкании кавитационных каверн, способны разрушать не только твердые и жидкие тела, но и многие биообъекты, в частности микроорганизмы.

Химическое действие УЗ при кавитации, возможно, обусловлено образованием на стенках кавитационной полости электрических микрозарядов с последующим электронным пробоем. Однако многие экспериментальные факты в рамках такого представления объяснить не удается. Наиболее оправданным является представление о тепловом механизме химического действия кавитации, так как при сжатии кавитационного пузырька температура в нем может достигать 95 °С. Большинство химических превращений под действием УЗ происходит в водных растворах. При высокой температуре молекулы воды внутри кавитационного пузырька переходят в возбужденное состояние и расщепляются на радикалы Н+, ОН–, а также, возможно, ионизируются с образованием гидратированных электронов, т.е. электронов с присоединенными к ним нейтральными молекулами воды. Частично радикалы рекомбинируют, причем состав конечных радикальных и молекулярных продуктов разложения воды в ультразвуковом поле зависит от природы растворенного в воде газа. Так, при воздействии УЗ на воду, в которой растворен воздух, образуются оксиды азота и перекись водорода. Кроме того, пропускание ультразвука через вещества ускоряет ход некоторых химических реакций. Обычно ускоряются реакции, идущие в присутствии Н2О2 и Н+, и особенно окислительные реакции под воздействием атомарного кислорода. Ускорение ряда химических реакций обусловлено действием различных физико-химических эффектов, связанных с ультразвуковой дегазацией, диспергированием, эмульгированием, локальным нагреванием при кавитации и др. Под действием УЗ происходит детонация дихлористого азота, что способствует расщеплению белковых частиц. Таким образом, ультразвуковые колебания могут применяться для инициирования химических реакций, осуществления ряда новых методов синтеза и ускорения медленных реакций в органической системе [80, 74, 82].

Имеются данные о том, что образование свободных радикалов ОН– и Н+ под действием УЗ вызывает изменение рН в биологических тканях в щелочную или кислую сторону в зависимости
от интенсивности и продолжительности воздействия [20, 160, 205]. Изменение рН воспаленных тканей в щелочную сторону вызывает анальгезирующий эффект вследствие резкого уменьшения воспалительных явлений, что используется в физиотерапии.

При распространении УЗ в биологических средах происходит его поглощение и преобразование акустической энергии в тепловую. Характерно, что образование тепла осуществляется не равномерно по всей толще тканей, а проявляется наиболее заметно на границах сред с волновыми сопротивлениями. Однако значительное повышение интенсивности УЗ и увеличение длительности его воздействия могут привести к чрезмерному нагреву биологических структур и к их разрушению. Поэтому тепловой эффект, наряду с кавитацией, используют в качестве основных действующих факторов в ряде ультразвуковых хирургических операций, например, для регенерации поврежденных тканей [14, 160].

Причиной изменений, возникающих в биологических объектах под действием УЗ, могут быть также вторичные эффекты физико-химического характера. Так, благодаря образованию акустических потоков, происходит энергичное перемешивание внутриклеточных микроскопических структур. Кавитация в среде приводит к разрыву молекулярных связей, молекулы воды распадаются на свободные радикалы ОН– и Н+, что является первопричиной действия УЗ. Подобным же образом происходит расщепление под действием УЗ высокомолекулярных соединений в биологических объектах (например, крахмала, нуклеиновых кислот, белковых веществ) клетки.

Одной из основных особенностей воздействия УЗ на микроорганизмы можно считать его влияние на клеточные мембраны. Действие УЗ может приводить к существенному изменению механических, электрических и иных свойств клеточных мембран, а также к нарушению внутреннего состава клеток и изменению концентраций веществ, растворенных в цитоплазме. При длительном воздействии УЗ последствия остаются в течение некоторого времени после прекращения облучения, и нормальная жизнедеятельность клетки может не восстановиться в течении минут, часов или даже дней. Разрыв клеточных мембран и нарушение механической целостности клеток – наиболее очевидное из возможных последствий ультразвукового облучения. Установлено, что особенно опасен для микроорганизмов низкочастотный УЗ, т.к. мощный низкочастотный ультразвук способен механически разрывать клеточные мембраны, что приводит к нарушению целостности и гибели клеток [20, 22, 118]. Однако даже при низких частотах механическое повреждение и гибель клеток происходят только при достаточно высоких интенсивностях УЗ, существенно превышающих физиологические дозы.

Следующая важная особенность действия УЗ на микроорганизмы – изменение концентрации различных веществ в составе цитоплазмы за счет изменения равновесной концентрации веществ вне и внутри клетки: акустическая волна создает микровихри в окружающей клетку среде, обеспечивая эффективное перемешивание
раствора. Таким образом воздействие УЗ приближает концентрацию веществ в цитоплазме, особенно ионов легких металлов, к их концентрации вне клетки. Это делает клетку более зависимой от состава внешней среды и может нарушить внутренние процессы жизнедеятельности. Нарушение внутреннего состава клетки и, как следствие, процессов ее жизнедеятельности, является наиболее глубоким и долгосрочным изменением. Последствия такого рода могут оставаться в силе по прошествии нескольких часов, а то и дней после окончания воздействия УЗ. По мере убывания интенсивности ультразвука эти последствия можно упорядочить следующим образом: нарушение целостности клетки – изменение свойств мембраны – изменение концентраций веществ в цитоплазме – нарушение жизнедеятельности.

Эффекты, достигаемые в результате облучения ультразвуком биологических объектов, обычно обусловлены совместным действием многих факторов, и не всегда ясно, какой из них играет первостепенную роль. Решение ряда задач, связанных с практическим применением УЗ в микробиологии, предполагает изучение характера акустического поля, т.е. распределения в пространстве звукового давления или интенсивности [239, 222].

Ультразвуковые колебания высокой интенсивности, повреждая клеточные оболочки микроорганизмов, вызывают их гибель. Еще с 1928 года ученые начали исследовать влияние УЗ на микроорганизмы и установили, что облучение бактерий группы кишечных палочек приводило к уменьшению их числа [28, 70, 160]. В последующие годы было опубликовано большое число работ о действии акустических волн на бактерии и вирусы. При этом выяснилось, что результаты могут быть очень разнообразные: с одной стороны, исследователи наблюдали повышение агглютинации, потерю вирулентности, или полную гибель бактерий, с другой стороны, отмечался обратный эффект – увеличение числа жизнеспособных особей. Последнее особенно часто имело место после кратковременного облучения. Очевидно, кратковременное действие УЗ способствует механическому разделению скоплений бактериальных клеток, благодаря чему каждая отдельная клетка дает начало новой колонии [180, 143].

Большинство патогенных микроорганизмов чувствительны к действию низкочастотного ультразвука. Так, при облучении гноеродной микрофлоры ран УЗ низкой частоты увеличивается чувствительность бактерий, как Гр– (P. aeruginosa, E. сoli), так и Гр+ (S. aureus)
к действию дезинфицирующих и антибактериальных препаратов
[67, 79]. Эффективно применение низкочастотного ультразвука в сочетании с различными антимикробными препаратами и для лечения бактериальных инфекций, связанных с образованием биопленок. Биоакустический эффект проявляется в уменьшении жизнеспособности бактерий в биопленках в результате одновременного воздействия низкочастотного ультразвука и антимикробных препаратов.

Известно, что применение ультразвуковых волн малых интенсивностей (до 2 Вт/см2) обычно вызывает положительные биологические эффекты. В опытах многих исследователей после обработки микроорганизмов ультразвуком малой интенсивности наблюдалось увеличение их чувствительности к лекарственным, противомикробным препаратам и дезинфицирующим средствам вследствие повышения проницаемости оболочки микробных клеток [85, 205].

Механизм бактерицидного действия УЗ в литературе объясняется двумя теориями: кавитационно-механической и кавитационно-электрохимической. Согласно первой теории – ультразвуковые волны, распространяясь в упругой среде, вызывают в ней попеременные сжатия и разряжения. В клетке создаются огромные давления, достигающие десятков и сотней МПа, что вызывает механическое разрушение цитоплазматических структур и гибель клетки. Кавитационно-электрохимическая теория объясняет ионизацию паров жидкостей и присутствующих в ней газов при образовании кавитационного пузырька. При разрыве пузырька происходит электрический разряд, сопровождающийся резким повышением температуры и возникновением в кавитационной полости электрического поля высокого напряжения. При этом пары жидкости и высокомолекулярные соединения в кавитационной полости расщепляются на водород и гидроксильную группу с образованием активного кислорода, перекиси водорода, азотистой и азотной кислот, в результате чего происходят инактивация ферментов и коагуляция белков. Все это приводит к гибели микробной клетки. Наиболее опасен для жизнедеятельности микробов низкочастотный УЗ (от 20 до 100 кГц), приводящий в первую очередь к их дезинтеграции [74, 80, 205].
Однако эффективность действия УЗ при одной и той же интенсивности и частоте колебаний также зависит от продолжительности воздействия, химического состава облучаемой среды, ее вязкости, температуры, рН и исходной степени обсемененности микроорганизмами. Чем больше микроорганизмов, тем продолжительнее должно быть воздействие для достижения стерилизующего эффекта [139, 143].

Устойчивость бактерий к действию УЗ зависит также от их биологических свойств. Вегетативные клетки более чувствительны, чем споры, кокковые формы погибают медленнее, чем палочковидные, более крупные клетки микроорганизмов отмирают быстрее, чем мелкие (максимальная чувствительность у лептоспир, а наиболее устойчивы стафилококки). Низкочастотный УЗ применяют для дезинтеграции микроорганизмов при изготовления вакцин, мойки и стерилизации стеклянной тары, а также при извлечении внутриклеточных ферментов, токсинов, витаминов, нуклеиновых кислот и других компонентов клетки. Ведутся исследования по применению УЗ-энергии для стерилизации питьевой воды [237, 239].

Разрушительное действие УЗ распространяется не только на бактерии, но и на некоторые вирусы. Ультразвуковые волны при частоте колебания 1–1,3 МГц в течение 10 минут оказывают бактерицидный эффект на указанные микроорганизмы [92, 121, 160]. Это позволяет использовать его для инактивации и дезинтеграции вирусов и других микроорганизмов с целью получения антигенов, вакцин и диагностикумов. Подвергая бактерии ультразвуковому воздействию определенной частоты и интенсивности, можно выделить из них не только антигены, но и токсины. Более того, действие ультразвука на выделенные токсины патогенных микроорганизмов может приводить к изменению их биологических свойств, что особенно важно для борьбы с возбудителями опасных инфекций [205, 210, 217].

В последнее время повышенное внимание к ультразвуковым технологиям в микробиологии обусловлено не только непосредственным воздействием на биообъекты, но также возможностью применения их для решения задач, связанных с изменениями физико-химических характеристик субстратов для культивирования микроорганизмов. Применение таких технологий актуально для регулирования состава искусственных питательных сред, в частности концентрации и активации молекулярного кислорода путем ультразвуковой дегазации среды. Таким образом, снижение концентрации кислорода в субстрате или в суспензии микроорганизмов обеспечивает микроаэрофильные условия культивирования бактерий, максимально приближая к условиям колонизации макроорганизма, что особенно важно для изучения процессов патогенеза многих инфекционных заболеваний и устойчивости к химиопрепаратам.

В настоящее время применение ультразвуковых технологий является перспективным для разработки иммунобиологических препаратов нового поколения, поскольку процессы кавитации могут быть использованы для перемещения определенных биомолекул внутрь бактериальных клеток для изменения их биологических свойств.


Кавитация в среде является основной причиной разрушающего действия ультразвука на микроорганизмы. Если образование пузырьков подавлялось путем повышения внешнего давления, то разрушающее действие на простейших уменьшалось. Почти мгновенный разрыв объектов в поле ультразвука вызывался заключенными внутри этих организмов пузырьками воздуха или находящегося в растительных клетках углекислого газа.

Это показывает, что возникающие при кавитации большие разности давлений приводят к разрыву клеточных оболочек и целых маленьких организмов. Многократно изучалось действие ультразвука на различные виды грибов. Так, ультразвук успешно применяют в фитопатологии. На семенах сахарной свеклы, зараженных естественным путем Phoma betae, Cercospora beticola, Alternaria sp. или Fusarium sp., удалось гораздо лучше уничтожить эти грибы и бактерии путем кратковременного облучения ультразвуком в воде, чем это удавалось до сих пор при помощи протравления. Облучение семян ультразвуком во время протравления значительно усиливает действие фунгицидного или бактерицидного вещества. Причина, по-видимому, заключается в том, что звуковые колебания увеличивают скорость диффузии воды и растворенных в ней веществ через оболочки растительных клеток, чем достигается более быстрое действие на грибы и бактерии.

Негативно действует УЗ и на отдельные клетки высших организмов. При облучении красных кровяных телец (эритроцитов) наблюдалось следующее: они теряли свою первоначальную форму и растягивались; при этом происходило их обесцвечивание (в результате гемолиза). При дальнейшем облучении они окончательно разрывались и распадались на множество отдельных маленьких шариков.

Уже в 1928 году было установлено, что светящиеся бактерии разрушаются под действием ультразвука. В последующие годы было опубликовано большое число работ о влиянии ультразвуковых волн на бактерии и вирусы. При этом выяснилось, что результаты могут быть очень разнообразными: с одной стороны , наблюдались повышенная агглютинация, потеря вирулентности или полная гибель бактерий, с другой стороны, отмечался и обратный эффект-увеличение числа жизнеспособных особей. Последнее особенно часто имеет место после кратковременного облучения и может объясняться тем, что при кратковременном облучении прежде всего происходит механическое разделение скоплений бактериальных клеток, благодаря чему каждая отдельная клетка дает начало новой колонии.

Было установлено, что тифозные палочки полностью убиваются ультразвуком с частотой 4,6 МГц, в то время как стафилококки и стрептококки повреждаются при этом лишь частично. При гибели бактерий одновременно происходит их растворение, т. е. разрушение морфологических структур, так что после действия ультразвука не только уменьшается число колоний в данной культуре, но подсчет числа особей обнаруживает уменьшение морфологически сохранившихся форм бактерий. При облучении ультразвуком с частотой 960 кГц бактерии размером 20-75 мкм разрушаются значительно быстрее и полнее, чем бактерии, имеющие размеры 8-12 мкм [23].

В Московском центральном научно-исследовательском институте травматологии и ортопедии им. Н. Н. Приорова проводились исследования [24] о влиянии низкочастотной ультразвуковой кавитации на жизнедеятельность различных штаммов стафилококка. В опытах in vitro были получены следующие результаты. Обработку ультразвуком проводили при температуре 32°С с помощью ультразвукового дезинтегратора фирмы MSE (Великобритания), имеющего следующие технические параметры: мощность 150 Вт, частота колебаний 20 кГц, амплитуда 55 мкм. Время воздействия составляло 1, 2, 5" 7, 10 минут. Для каждой экспозиции использовались отдельные флаконы с 5 мл взвеси микроорганизмов, содержащей в 1 мл жидкости 2500 микробных тел. Результаты исследований показали, что способность микроорганизмов к размножению при посеве их на твердые питательные среды сразу после ультразвуковой обработки не только не ослабляется, но при некоторых экспозициях озвучивания (1-3 мин) даже несколько усиливается. В то же время при озвучивании стафилококка в течение 5, 7 и 10 минут изменения количества выросших колоний на поверхности агара в чашках Петри были несущественными и почти не отличались от контроля. Влияние ультразвука на микроорганизмы может проявляться^ не сразу, а через некоторое время, необходимое для развития в клетках метаболических нарушений, поэтому изучалась высеваемость стафилококка на твердые питательные среды через 24, 36, и 48 часов после ультразвуковой обработки. До высева на чашки Петри озвученные штаммы стафилококка культивировали в пробирках с бульоном в термостате при 37°С. Было установлено, что через 24 и 36 часов после ультразвуковой обработки количество выросших колоний стафилококков по сравнению с контролем снижается, высеваемость стафилококка при этом обратно пропорциональна времени озвучивания микроорганизмов. После 7-10-минутного озвучивания высев или не давал никакого роста или же на чашках Петри вырастали единичные, не характерные для стафилококка колонии. Через 48 часов угнетающее действие ультразвука было более выраженным и проявлялось в дальнейшем уменьшении высева микроорганизмов при всех экспозициях.

Исследование чувствительности озвученных микроорганизмов к действию некоторых антибиотиков и антисептиков показало, что у 8 из 13 использованных препаратов минимальная подавляющая концентрация после ультразвуковой обработки стафилококка снизилась в 2-4 раза. Это свидетельствует о целесообразности совместного применения ультразвуковых колебаний низкой частоты и антибактериальных растворов для более эффективного воздействия на микробную клетку [7,10].

Разрушающее действие ультразвуковых волн зависит от концентрации бактериальной взвеси. В слишком густой и, следовательно, очень вязкой взвеси не наблюдается разрушения бактерий, а можно отметить только нагревание. Различные штаммы одного и того же вида бактерий могут совершенно по-разному относиться к облучению ультразвуком [11].

Таким образом, можно заключить, что эффект воздействия ультразвука на биоматерию вообще и микроорганизмы, в частности, зависит от многих факторов среды и от состояния живой материи и в реальной действительности достаточно трудно прогнозируем.

На кафедре СГТУ были проведены эксперименты по ультразвуковой очистке титановых внутрикостных стоматологических имплантатов в различных рабочих растворах.

Очистка изделий происходит тем эффективнее, чем ближе они находятся к излучающей поверхности излучателя. С удалением от излучателя интенсивность ультразвуковых колебаний изменяется по идеализированной кривой. Наилучший результат был получен при интенсивности 16 Вт/см2 в водопроводной и технической воде при 50+5°С с концентрацией сульфанола 0,25% при времени озвучивания 5-10 минут (рис. 2.1). Озвучиваемые изделия находились на расстоянии не более 10 мм от излучающей поверхности.


Рис. 2.1. График зависимости загрязненности изделий от времени озвучивания при интенсивности колебаний 16 Вт/см2

Таким образом, согласно проведенным опытам, повышение интенсивности с 0,4 "до 16 Вт/см2 дает улучшение качества очистки (рис. 2.2), но 100% стерилизация изделий не достигается ни при одном режиме.


Рис. 2.2. График зависимости стерилизующего воздействия ультразвука от интенсивности ультразвука.

13.08.2014 23:02
дата обновления страницы


















Приведем несколько наиболее занимательных и познавательных на мой взгляд статей из книги: Ультразвуковые процессы и аппараты в биологии и медицине". Учебное пособие для студентов специальности 190500, под редакцией профессора В.Н. Лясникова (СГТУ, Саратов 2005 г. тираж 100 экземпляров), данную книгу можно взять в городской библиотеке г. Саратова на ул. академика Зарубина и ознакомится с ней более подробно.

Кавитация в среде является основной причиной разрушающего действия ультразвука на микроорганизмы. Если образование пузырьков подавлялось путем повышения внешнего давления, то разрушающее действие на простейших уменьшалось. Почти мгновенный разрыв объектов в поле ультразвука вызывался заключенными внутри этих организмов пузырьками воздуха или находящегося в растительных клетках углекислого газа. Это показывает, что возникающие при кавитации большие разности давлений приводят к разрыву клеточных оболочек и целых маленьких организмов. Многократно изучалось действие ультразвука на различные виды грибов. Так, ультразвук успешно применяют в фитопатологии. На семенах сахарной свеклы, зараженных естественным путем Phoma betae, Cercospora beticola, Alternaria sp. или Fusarium sp., удалось гораздо лучше уничтожить эти грибы и бактерии путем кратковременного облучения ультразвуком в воде, чем это удавалось до сих пор при помощи протравления. Облучение семян ультразвуком во время протравления значительно усиливает действие фунгицидного или бактерицидного вещества. Причина, по-видимому, заключается в том, что звуковые колебания увеличивают скорость диффузии воды и растворенных в ней веществ через оболочки растительных клеток, чем достигается более быстрое действие на грибы и бактерии.

Негативно действует УЗ и на отдельные клетки высших организмов. При облучении красных кровяных телец (эритроцитов) наблюдалось следующее: они теряли свою первоначальную форму и растягивались; при этом происходило их обесцвечивание (в результате гемолиза). При дальнейшем облучении они окончательно разрывались и распадались на множество отдельных маленьких шариков.

Уже в 1928 году было установлено, что светящиеся бактерии разрушаются под действием ультразвука. В последующие годы было опубликовано большое число работ о влиянии ультразвуковых волн на бактерии и вирусы. При этом выяснилось, что результаты могут быть очень разнообразными: с одной стороны , наблюдались повышенная агглютинация, потеря вирулентности или полная гибель бактерий, с другой стороны, отмечался и обратный эффект-увеличение числа жизнеспособных особей. Последнее особенно часто имеет место после кратковременного облучения и может объясняться тем, что при кратковременном облучении прежде всего происходит механическое разделение скоплений бактериальных клеток, благодаря чему каждая отдельная клетка дает начало новой колонии.

Было установлено, что тифозные палочки полностью убиваются ультразвуком с частотой 4,6 МГц, в то время как стафилококки и стрептококки повреждаются при этом лишь частично. При гибели бактерий одновременно происходит их растворение, т. е. разрушение морфологических структур, так что после действия ультразвука не только уменьшается число колоний в данной культуре, но подсчет числа особей обнаруживает уменьшение морфологически сохранившихся форм бактерий. При облучении ультразвуком с частотой 960 кГц бактерии размером 20-75 мкм разрушаются значительно быстрее и полнее, чем бактерии, имеющие размеры 8-12 мкм [23].

В Московском центральном научно-исследовательском институте травматологии и ортопедии им. Н. Н. Приорова проводились исследования [24] о влиянии низкочастотной ультразвуковой кавитации на жизнедеятельность различных штаммов стафилококка. В опытах in vitro были получены следующие результаты. Обработку ультразвуком проводили при температуре 32°С с помощью ультразвукового дезинтегратора фирмы MSE (Великобритания), имеющего следующие технические параметры: мощность 150 Вт, частота колебаний 20 кГц, амплитуда 55 мкм. Время воздействия составляло 1, 2, 5" 7, 10 минут. Для каждой экспозиции использовались отдельные флаконы с 5 мл взвеси микроорганизмов, содержащей в 1 мл жидкости 2500 микробных тел. Результаты исследований показали, что способность микроорганизмов к размножению при посеве их на твердые питательные среды сразу после ультразвуковой обработки не только не ослабляется, но при некоторых экспозициях озвучивания (1-3 мин) даже несколько усиливается. В то же время при озвучивании стафилококка в течение 5, 7 и 10 минут изменения количества выросших колоний на поверхности агара в чашках Петри были несущественными и почти не отличались от контроля. Влияние ультразвука на микроорганизмы может проявляться^ не сразу, а через некоторое время, необходимое для развития в клетках метаболических нарушений, поэтому изучалась высеваемость стафилококка на твердые питательные среды через 24, 36, и 48 часов после ультразвуковой обработки. До высева на чашки Петри озвученные штаммы стафилококка культивировали в пробирках с бульоном в термостате при 37°С. Было установлено, что через 24 и 36 часов после ультразвуковой обработки количество выросших колоний стафилококков по сравнению с контролем снижается, высеваемость стафилококка при этом обратно пропорциональна времени озвучивания микроорганизмов. После 7-10-минутного озвучивания высев или не давал никакого роста или же на чашках Петри вырастали единичные, не характерные для стафилококка колонии. Через 48 часов угнетающее действие ультразвука было более выраженным и проявлялось в дальнейшем уменьшении высева микроорганизмов при всех экспозициях.

Исследование чувствительности озвученных микроорганизмов к действию некоторых антибиотиков и антисептиков показало, что у 8 из 13 использованных препаратов минимальная подавляющая концентрация после ультразвуковой обработки стафилококка снизилась в 2-4 раза. Это свидетельствует о целесообразности совместного применения ультразвуковых колебаний низкой частоты и антибактериальных растворов для более эффективного воздействия на микробную клетку [7,10].

Разрушающее действие ультразвуковых волн зависит от концентрации бактериальной взвеси. В слишком густой и, следовательно, очень вязкой взвеси не наблюдается разрушения бактерий, а можно отметить только нагревание. Различные штаммы одного и того же вида бактерий могут совершенно по-разному относиться к облучению ультразвуком [11].

Таким образом, можно заключить, что эффект воздействия ультразвука на биоматерию вообще и микроорганизмы, в частности, зависит от многих факторов среды и от состояния живой материи и в реальной действительности достаточно трудно прогнозируем.

На кафедре СГТУ были проведены эксперименты по ультразвуковой очистке титановых внутрикостных стоматологических имплантатов в различных рабочих растворах.

Очистка изделий происходит тем эффективнее, чем ближе они находятся к излучающей поверхности излучателя. С удалением от излучателя интенсивность ультразвуковых колебаний изменяется по идеализированной кривой. Наилучший результат был получен при интенсивности 16 Вт/см2 в водопроводной и технической воде при 50+5°С с концентрацией сульфанола 0,25% при времени озвучивания 5-10 минут (рис. 2.1). Озвучиваемые изделия находились на расстоянии не более 10 мм от излучающей поверхности.


Рис. 2.1. График зависимости загрязненности изделий от времени озвучивания при интенсивности колебаний 16 Вт/см2

Таким образом, согласно проведенным опытам, повышение интенсивности с 0,4 "до 16 Вт/см2 дает улучшение качества очистки (рис. 2.2), но 100% стерилизация изделий не достигается ни при одном режиме.


Рис. 2.2. График зависимости стерилизующего воздействия ультразвука от интенсивности ультразвука

p . s . При копировании материалов и фотографий активная ссылка на сайт обязательна.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.