Что за вирус черная дыра



Однако предположения о существовании объектов настолько массивных, что силу их притяжения не может преодолеть даже свет, выдвигались еще в XVIII веке. Современная теория черных дыр начала формироваться в рамках общей теории относительности. Интересно, что сам Альберт Эйнштейн в существование черных дыр не верил.

Ученые полагают, что черные дыры бывают разными по происхождению. Черной дырой в конце жизни становятся массивные звезды: за миллиарды лет в них меняется состав газов, температура, что приводит к нарушению равновесия между гравитацией звезды и давлением раскаленных газов. Тогда происходит коллапс звезды: ее объем уменьшается, но, поскольку масса не меняется, растет плотность. Типичная черная дыра звездной массы имеет радиус 30 километров и плотность вещества более 200 млн тонн на кубический сантиметр. Для сравнения: чтобы Земля стала черной дырой, ее радиус должен составить 9 миллиметров.

Существует еще один вид черных дыр — сверхмассивные черные дыры, которые образуют ядра большинства галактик. Их масса в миллиард раз больше массы звездных черных дыр. Происхождение сверхмассивных черных дыр неизвестно, есть гипотеза, что когда-то они были черными дырами звездной массы, которые росли, поглощая другие звезды.

Есть также спорная идея о существовании первичных черных дыр, которые могли появиться от сжатия любой массы в начале существования Вселенной. Кроме того, существует предположение, что очень маленькие черные дыры с массой, близкой массе элементарных частиц, образуются на Большом адронном коллайдере. Однако подтверждения этой версии пока нет.


В центре галактики Млечный Путь есть черная дыра — Стрелец А*. Ее масса в четыре миллиона раз больше массы Солнца, а размер — 25 миллионов километров — примерно равен диаметру 18 солнц. Подобные масштабы заставляют некоторых задаваться вопросом: а не угрожает ли черная дыра всей нашей галактике? Основания для таких предположений есть не только у фантастов: несколько лет назад ученые сообщили о галактике W2246–0526, которая находится в 12,5 млрд световых лет от нашей планеты. Согласно описанию астрономов, находящаяся в центре W2246–0526 свермассивная черная дыра постепенно разрывает ее на части, а возникающее в результате этого процесса излучение разгоняет во все стороны раскаленные гигантские облака газа. Разрываемая черной дырой галактика светится ярче, чем 300 триллионов солнц.

Впрочем, даже если мы когда-нибудь и попадем за горизонт событий черной дыры то, скорее всего, даже не заметим этого.


Объект, притянутый черной дырой, скорее всего, не сможет оттуда вернуться. Чтобы преодолеть гравитацию черной дыры, нужно развить скорость выше скорости света, но человечество пока не знает, как это можно сделать.


Если описывать спагеттификацию с точки зрения космонавта, который подлетел к черной дыре ногами вперед, то гравитационное поле будет затягивать его ноги, а затем растянет и разорвет тело, превратив его в поток субатомных частиц.

Со стороны увидеть падение в черную дыру невозможно, так как она поглощает свет. Сторонний наблюдатель увидит лишь, что приближающийся к черной дыре объект постепенно замедляется, а затем и вовсе останавливается. После этого силуэт объекта будет становиться все более размытым, обретать красный цвет, и наконец просто исчезнет навсегда.

По предположению Стивена Хокинга, все объекты, которые притягивает черная дыра, остаются в горизонте событий. Из теории относительности следует, что вблизи черной дыры время замедляется вплоть до остановки, поэтому для того, кто падает, самого падения в черную дыру может никогда не произойти.

Достоверного ответа на этот вопрос по понятным причинам сейчас не существует. Впрочем, ученые сходятся во мнении, что внутри черной дыры привычные нам законы физики уже не действуют. Согласно одной из самых захватывающих и экзотических гипотез, пространственно-временной континуум вокруг черной дыры искажается настолько, что в самой реальности образуется прореха, которая может быть порталом в другую вселенную — или так называемой кротовой норой.

Черные дыры — это, пожалуй, самые загадочные объекты Вселенной. Если, конечно, где-то в глубинах не скрываются вещи, о существовании которых мы не знаем и знать не можем, что вряд ли. Черные дыры — это колоссальная масса и плотность, сжатая в одну точку небольшого радиуса. Физические свойства этих объектов настолько странные, что заставляют ломать голову самых искушенных физиков и астрофизиков. Сабина Хоссфендер, физик-теоретик, сделала подборку десяти фактов о черных дырах, которые должен знать каждый.

Возможно так и выглядит черная дыра

Что такое черная дыра?


Схматичное изображение устройства черной дыры

Насколько большие черные дыры?


Выглядит впечатляюще, согласны?

Можно представить горизонт черной дыры как сферу, и ее диаметр будет прямо пропорциональным массе черной дыры. Поэтому чем больше массы падает в черную дыру, тем больше становится черная дыра. По сравнению со звездными объектами, впрочем, черные дыры крошечные, потому что масса сжимается в очень малые объемы под действием непреодолимого гравитационного давления. Радиус черной дыры массой с планету Земля, например, всего несколько миллиметров. Это в 10 000 000 000 раз меньше настоящего радиуса Земли.

Радиус черной дыры называется радиусом Шварцшильда в честь Карла Шварцшильда, который впервые вывел черные дыры как решение для общей теории относительности Эйнштейна.

Что происходит на горизонте?


Когда вы пересекаете горизонт, вокруг вас ничего особенного не происходит. Все из-за принципа эквивалентности Эйнштейна, из которого следует, что нельзя найти разницу между ускорением в плоском пространстве и гравитационным полем, создающим кривизну пространства. Тем не менее наблюдатель вдали от черной дыры, который наблюдает за тем, как кто-то другой падает в нее, заметит, что человек будет двигаться все медленнее и медленнее, подходя к горизонту. Будто бы время вблизи горизонта событий движется медленнее, чем вдали от горизонта. Однако пройдет некоторое время, и падающий в дыру наблюдатель пересечет горизонт событий и окажется внутри радиуса Шварцшильда.

В первые дни общей теории относительности считалось, что на горизонте существует сингулярность, но это оказалось не так.

Что внутри черной дыры?

Никто не знает наверняка, но точно не книжная полка. Общая теория относительности прогнозирует, что в черной дыре сингулярность, место, в котором приливные силы становятся бесконечно большими, и как только вы преодолеваете горизонт событий, вы уже не можете попасть куда-либо еще, кроме как в сингулярность. Соответственно, ОТО лучше не использовать в этих местах — она попросту не работает. Чтобы сказать, что происходит внутри черной дыры, нам нужна теория квантовой гравитации. Общепризнанно, что эта теория заменит сингулярность чем-то другим.

Как образуются черные дыры?

А вы когда-нибудь задумывались, что произойдет, если рядом с Землей появится Черная Дыра?

Более спорной идеей стали первичные черные дыры, которые могли быть сформированы практически любой массой в крупных флуктуациях плотности в ранней Вселенной. Хотя это возможно, достаточно трудно найти модель, которая производит их, при этом не создавая чрезмерное их количество.

Наконец, есть очень умозрительная идея о том, что на Большом адронном коллайдере могут образовываться крошечные черные дыры с массами, близкими массе бозона Хиггса. Это работает только в том случае, если у нашей Вселенной имеются дополнительные измерения. Пока не было никаких подтверждений в пользу этой теории.

Откуда мы знаем, что черные дыры существуют?


Черные дыры до сих пор не изучены, и вряд ли будут изучены ближайшие десятки лет

У нас есть много наблюдательных доказательств существования компактных объектов с крупными массами, которые не излучают свет. Эти объекты выдают себя по гравитационному притяжению, например, за счет движения других звезд или газовых облаков вокруг них. Они также создают гравитационное линзирование. Мы знаем, что у этих объектов нет твердой поверхности. Это вытекает из наблюдений, потому что вещество, падая на объект с поверхностью, должно вызывать выброс большего числа частиц, чем вещество, падающее сквозь горизонт.

Почему в прошлом году Хокинг сказал, что черные дыры не существуют?


Так существуют ли черные дыры на самом деле?

Он имел в виду, что черные дыры не имеют вечного горизонта событий, а только временный кажущийся горизонт (см. пункт первый). В строгом смысле только горизонт событий считается черной дырой.

Как черные дыры испускают излучение?


Черные дыры испускают излучение, каким бы безумным это не казалось

Черные дыры испускают излучение за счет квантовых эффектов. Важно отметить, что это квантовые эффекты вещества, а не квантовые эффекты гравитации. Динамическое пространство-время коллапсирующей черной дыры меняет само определение частицы. Подобно течению времени, которое искажается рядом с черной дырой, понятие частиц слишком зависимо от наблюдателя. В частности, когда наблюдатель, падающий в черную дыру, думает, что падает в вакуум, наблюдатель далеко от черной дыры думает, что это не вакуум, а полное частиц пространство. Именно растяжение пространства-времени вызывает этот эффект.

Здесь можно почитать о самой большой Черной Дыре, которую удалось обнаружить на данный момент

Что такое информационный парадокс?

Выходит, испарение черной дыры несовместимо с квантовой теории, известной нам, и с этим нужно что-то делать. Каким-то образом устранить несогласованность. Большинство физиков считают, что решение состоит в том, что излучение Хокинга должно каким-то образом содержать информацию.

Что предлагает Хокинг для решения информационного парадокса черной дыры?

Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга. В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера. Говорят, он появится в конце сентября.

На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.

Давайте обсудим Черные Дыры в нашем Telegram-канале?

Первая фотография черной дыры, полученная с помощью системы радиотелескопов Event Horizon Telescope, стала главной новостью прошлой недели.

Беседовала Светлана Сухова

— Олег Юрьевич, объясните, пожалуйста, не астрономам, что такое черная дыра и что такое тень черной дыры.

— Я бы начал с того, что существование черных дыр является одним из фундаментальных предсказаний Общей теории относительности. Черная дыра представляет собой область пространства — времени, где гравитация настолько сильна, что даже свет не может ее покинуть. Черные дыры создают вокруг себя очень сильное гравитационное поле, поскольку большая масса сосредоточена в очень малых размерах. Настолько сильная гравитация приводит к тому, что лучи света, движущиеся около черной дыры, могут как захватываться черной дырой, так и очень сильно отклоняться и даже двигаться по круговым орбитам. За счет этих эффектов возникает темное изображение черной дыры — так называемая тень черной дыры.


— Какое значение для науки имеет фото черной дыры и оправдан ли тот шум, что поднялся в сети после его публикации?

Гораздо чаще мы имеем дело с иной ситуацией: когда поднимаемый в СМИ, соцсетях и интернете шум зависит не столько от научной ценности исследования, сколько от того, как эффектно поданы его результаты. А вот в этом случае результат огромной научной работы действительно возможно подать в очень эффектном виде — в виде одной картинки.

— Что знает научный мир сегодня о черных дырах?

— Существует как огромное количество теоретических работ, описывающих свойства черных дыр с самых разных сторон, так и достаточно много убедительных наблюдательных доказательств их существования. Поскольку сейчас речь идет о наблюдательном открытии, остановлюсь на том, какие наблюдательные свидетельства существования черных дыр были у ученых до прошлой недели.

Во-первых, как я уже говорил, считается, что в центре большинства галактик имеется сверхмассивная черная дыра, с массой в миллионы и даже в миллиарды масс Солнца. Например, в центре нашей Галактики находится сверхмассивная черная дыра массой в несколько миллионов масс Солнца. Это установлено по наблюдениям звезд, вращающихся вокруг центра нашей Галактики, в совокупности с оценками размеров области пространства, где этот центральный объект предполагается. Говоря простым языком: ученые видят, что звезды в центре нашей Галактики вращаются вокруг чего-то невидимого, но очень массивного, причем эта огромная масса сосредоточена в очень малых масштабах. Отсюда ученые и приходят к выводу, что это черная дыра.

Кстати, наблюдения тени сверхмассивной черной дыры в центре нашей Галактики тоже проводились в проекте Event Horizon Telescope, но результаты пока не обнародованы. (Представленный снимок — это снимок черной дыры в галактике M87.)

Во-вторых, есть черные дыры в так называемых двойных системах — когда черная дыра звездной массы (не сверхмассивная) находится в паре с обычной звездой. В этом случае может возникнуть поток вещества с обычной звезды на черную дыру, увеличивается светимость и появляется яркий источник, который можно наблюдать. Пример такого источника — Лебедь X-1.


В-третьих, важный шаг по подтверждению существования черных дыр был сделан при недавнем открытии гравитационных волн. Полученный сигнал согласуется с тем, что он вызван слиянием двух черных дыр.

Все эти примеры были известны. Но представленный снимок черной дыры — первое прямое и наиболее убедительное на данный момент доказательство существования черных дыр.

— Способно ли эта фото изменить наши представления?

— Черные дыры — весьма далекие от Земли объекты. Почему человечество уделяет им столько внимания?

— Черная дыра — один из самых популярных объектов в астрофизике, причем как для ученых, так и для широкой публики. Объясняется это удивительными свойствами черных дыр, что следует из Общей теории относительности Эйнштейна — одной из самых фундаментальных теорий на данный момент. Поэтому изучение черных дыр и любое подтверждение их существования и свойств вносят огромный вклад в наше понимание того, как вообще устроен мир.


Черная дыра — это область в пространстве-времени, которая имеет гравитационное притяжение настолько сильное, что ничто, даже свет, не может ее покинуть. Граница черной дыры, за пределы которой не может вырваться никакой другой объект или излучение, называется горизонтом событий, а расстояние между этой границей и бесконечно плотным ядром — гравитационным радиусом или радиусом Шварцшильда.

Считается, что любая масса, спрессованная в сферу, радиус которой меньше или равен радиусу Шварцшильда, является черной дырой. Настолько сжатая масса может возникнуть, например, в результате гравитационного коллапса на самых поздних этапах развития очень тяжелой звезды.

Как образуются черные дыры?

Эти монстры возникают как фениксы, возрождаясь из пепла мертвых звезд. Известно, что в звездах происходят реакции термоядерного синтеза — слияние ядер легких атомов в более тяжелые, с выделением большого количества энергии. Так вот, когда звезды достигают конца своей жизни, запасы водорода, который они превращают в гелий, почти полностью истощаются. После водорода они начинают сжигать гелий и так далее, превращая оставшиеся атомы в еще более тяжелые элементы, вплоть до железа, чье слияние уже не дает достаточно энергии для поддержания внешних слоев звезды. Вследствие этого верхние слои рушатся внутрь и взрываются — этот взрыв называется вспышкой сверхновой.

Теоретически, такой взрыв может сжать массу вещества достаточно, чтобы ее радиус стал меньше или равен радиусу Шварцшильда, и она превратилась в черную дыру. Чтобы вы понимали, типичная нейтронная звезда (то, что обычно остается от звезды после вспышки сверхновой) имеет радиус Шварцшильда около 1/3 от ее собственного радиуса.

После образования черная дыра продолжает расти, поглощая материю из окружающего пространства. Поглощение звезд и слияние с другими черными дырами может привести к образованию сверхмассивной черной дыры. Согласно общему пониманию, такие объекты существуют в центрах большинства галактик.

Особенности черной дыры

Черная дыра выглядит очень необычно, лишь отдаленно напоминая некую планету, имеющую странные изогнутые кольца. Однако без аккреционного диска, вращающегося вокруг нее, мы бы ее даже не увидели. Давайте посмотрим какие у нее есть внешние особенности.

Кольцевая структура аккреционного диска, состоит из вещества, падающего на черную дыру, оно разогрето и поэтому светится.

Фотонное кольцо (или орбита фотона) — это свет, который несколько раз сгибался вокруг черной дыры, прежде чем ускользнуть. Он имеет много слоев, которые становятся все тусклее и тусклее, это происходит потому, что с каждым новым витком свету сложнее вырваться за пределы этого монстра.

На приведенном выше изображении левая сторона аккреционного диска выглядит ярче, чем правая из-за Эффекта Доплера, который обусловлен огромной орбитальной скоростью.

Мы видим изогнутый аккреционный диск (сверху и снизу), потому что гравитация отклоняет направление света.

Как мы узнали о существовании этих космических монстров?

Уже обнаружено около тысячи объектов, которые причисляются к черным дырам. Всего же предполагается существование десятков миллионов таких объектов. Опишем коротко, как человечество пришло к таким открытиям.

Гипотеза о существовании такого массивного объекта была впервые предложена в 1783 году английским геологом Джоном Митчеллом в письме Генри Кавендишу из Британского королевского общества. В то время теория гравитации Ньютона и идея второй космической скорости были хорошо известны. По оценкам Митчелла, тело с радиусом в 500 раз больше солнечного и с такой же плотностью будет иметь на своей поверхности вторую космическую скорость, равную скорости света, и поэтому будет невидимым.

В 1915 году Альберт Эйнштейн разработал общую теорию относительности, ранее показав, что гравитация влияет на движение света. Через несколько месяцев Шварцшильд дал решение для уравнений Эйнштейна (Метрика Шварцшильда), которое достаточно точно описывает гравитационное поле уединённой невращающейся и незаряженной чёрной дыры.

В 1939 году Роберт Оппенгеймер и Хартланд Снайдер предсказали, что массивные звезды могут подвергнуться резкому гравитационному коллапсу. Однако черные дыры (как гипотетические объекты) не были предметом большого интереса до конца 1960-х годов. Интерес к ним ожил в 1967 году с открытием пульсаров.


Астрономы из Военно-морской исследовательской лаборатории США обнаружили Лебедь Х-1 в 1964 году. Он был дополнительно исследован в 1970-х годах, когда был запущен рентгеновский спутник Ухуру (Uhuru). Когда за объектом начали наблюдать, обнаружилось, что его не было видно ни на одной плоскости электромагнитного спектра, кроме рентгеновских лучей. Более того, рентгеновские лучи мерцали по интенсивности каждую миллисекунду. Затем астрономы переключились на его ближайшего соседа — звезду HDE 226868, у которого была замечена орбита, указывающая на то, что он является частью двойной системы. Однако странность заключалась в том, что ни одна звезда-компаньон не находилась в непосредственной близости от HDE 226868. Чтобы HDE оставался на своей орбите, его спутнику требовалась масса, превышающая таковую у типичного белого карлика или нейтронной звезды. Более того, это странное мерцание могло возникнуть только из-за небольшого объекта, который мог претерпевать такие быстрые изменения. Озадаченные, ученые смотрели на свои предыдущие наблюдения и теории, чтобы попытаться определить, что это за объект, но были шокированы, когда нашли свое решение в теории, которую многие считали просто математической фантазией.


Сингулярность — это точка за горизонтом событий, где, согласно общей теории относительности, пространство-время имеет бесконечную кривизну. В этой области пространство и время перестают существовать в том виде, как мы их знаем, а потому к ней не применимы действующие законы физики. Пространство за горизонтом событий особенно в том смысле, что сингулярность является буквально единственным возможным будущим, поэтому все частицы должны двигаться к нему.

Несмотря на невидимую внутренность, присутствие таких массивных объектов можно обнаружить по их взаимодействию с окружающими объектами, а также светом и другим электромагнитным излучениям (гравитационное линзирование).

Отличить черную дыру от другого объекта можно по соотношению размера к массе, для этого нужно сравнить ее физический радиус с гравитационным радиусом. Массу и расположение черных дыр рассчитывают используя данные о перемещении звезд.

Какая самая большая черная дыра?

Самая большая черная дыра, присутствующая в нашей галактике — это Стрелец A*, ее масса в 4 миллиона раз больше, чем у Солнца. Она находится на расстоянии 25900 световых лет от Земли и должна иметь радиус не менее 12,7 ± 1,1 млн км.

Черная дыра в галактике Андромеды (M81)

Галактика Андромеды, расположенная на расстоянии 2,5 миллиона световых лет от нас, имеет черную дыру, которая составляет 110–230 миллионов масс Солнца. Этот объект значительно больше Стрельца А* в Млечном Пути.

Измерения массы, опубликованные телескопом Event Horizon в 2019 году, предполагают, что M87* — самая большая сверхмассивная черная дыра в окрестностях Млечного Пути. Ее масса около 6,5 млрд M☉, она расположена на расстоянии 53,5 млн световых лет от Земли.

Вращающийся диск с ионизированным газом окружает черную дыру и приблизительно перпендикулярен релятивистской струе, испускаемой М87*. Диск вращается со скоростью примерно до 1000 км/с и имеет максимальный диаметр 0,12 парсек (25 000 а.е.). Для сравнения, в среднем Плутон находится в 39 астрономических единицах (0,00019 парсек) от Солнца. M87* — это первая и пока единственная черная дыра, изображение которой мы смогли получить, оно было опубликовано 10 апреля 2019 года.


Массы черных дыр в квазарах можно оценить косвенными методами, что предполагает значительную неточность. Квазар TON 618 является примером объекта с чрезвычайно большой черной дырой, оцененной в 66 млрд солнечных масс. Другие примеры квазаров с оцененными массами черных дыр — APM 08279+5255, с массой 23 млрд M☉; S5 0014+81, с массой 40 миллиардов М☉.

Излучение

Предполагается, что черная дыра излучает разнообразные элементарные частицы, этот гипотетический процесс называется излучением Хокинга.

Излучение Хокинга

Излучение Хокинга является главным аргументом ученых относительно испарения небольших чёрных дыр, которые теоретически могут возникать в ходе экспериментов на БАК.

Как долго может существовать черная дыра?

Гипотетически срок жизни черной дыры зависит от ее массы, которую она теряет из-за излучения Хокинга. Интересно, что черные дыры с меньшей массой теряют ее быстрее, чем более крупные. Это потому, что кривизна, которую они создают в пространстве, является более высокой вокруг горизонта событий. Однако даже в этом случае, черные дыры живут очень и очень долго.

Например, для полного испарения черной дыры с массой Солнца потребуется 10 67 лет. Для более крупных черных дыр во Вселенной это могло бы занять невероятные 10 100 лет. Гипотетически, когда все звезды и планеты погибнут, черные дыры ещё будут существовать, и в конечном итоге исчезнут сами собой.

Черной дырой в классическом понимании называют область пространства-времени, гравитационное притяжение которой настолько сильно, что ее не могут покинуть никакие объекты, движущиеся со скоростью света. Даже кванты самого света.

Граница черной дыры называется горизонтом событий, а ее размер — гравитационным радиусом. Черные дыры притягивают к себе материю, которая образовывает вокруг них аккреционный диск — гигантскую структуру вокруг черной дыры, которая быстро вращается. Именно из-за материи, светящейся во время вращения, ученым и удалось обнаружить существование черных дыр. При этом внутрь черной дыры попадает лишь небольшое количество этой материи, остальное отправляется обратно в космос в виде струи плазмы или джета, траектория которой совпадает с линиями магнитного поля. У некоторых черных дыр скорость движения этой плазмы достигает 99% от скорости света.


Сейчас в астрофизике существует четыре основных сценария образования черных дыр.

— Гравитационный коллапс очень массивной звезды. Согласно этой гипотезе, в конце своей жизни практически любая звезда с массой более трех солнечных, которая уже израсходовала все термоядерные реакции, может превратиться именно в такой тип сверхплотной материи — в нейтронную звезду, которая необходима для возникновения подобного искривленного участка Вселенной. По сути, это звезда, которая схлопывается под собственной тяжестью, увлекает за собой пространственно-временной континуум, находящийся вокруг нее. Гравитационное поле этого объекта становится настолько сильным, что из него не может вырваться даже свет. Поэтому эта область называется черной дырой.

— Коллапс центральной части галактики или области протогалактического газа. По сути, процесс появления черных дыр в этой гипотезе очень похож на первый вариант, только коллапсирует под собственным весом часть галактики, а не отдельная звезда. Эта гипотеза основана на наблюдении ученых, что практически каждая галактика имеет черную дыру в своем центре. Это не сходится с версией о появлении черных дыр из коллапсирующих звезд.

— Появление черных дыр в момент начального расширения Вселенной, так называемые первичные черные дыры. Согласно этой гипотезе, сразу же после Большого взрыва давление и температура в космосе были сверхвысокими. В таких условиях простые колебания плотности материи, например, начало расширения Вселенной, были достаточно значительными, чтобы появились территории с такой гравитацией. При этом большинство областей с высокой плотностью удалилось друг от друга из-за расширения Вселенной. Также космологами высказано предположение, что первичные черные дыры с массами в диапазоне от 10 14 до 10 23 кг могут составлять темную материю. Это наиболее тяжелые кандидаты на частицы темной материи.

— Возникновение черных дыр в ядерных реакциях высоких энергий. Подобные реакции используют для изучения частиц в адронных коллайдерах.

Кроме того, черными дырами ученые часто называют объекты, не полностью соответствующие их точному определению, а лишь приближающиеся по своим свойствам к ним. В эту же категорию входят коллапсирующие звезды на поздних стадиях коллапса.

При этом пока неизвестно, что становится с черными дырами после их смерти. Ученые считают, что Вселенная еще слишком молода для разрушения первых из них. Согласно математическим расчетам Стивена Хокинга, черные дыры должны постепенно просто испаряться, отдавая свою энергию в окружающую среду.

Концепция существования массивного тела, гравитационное притяжение которого настолько велико, что скорость, которая необходима для его преодоления, превышает скорость движения света (а значит физически не может существовать во Вселенной), была впервые выдвинута английским ученым Джоном Мичеллом в 1784 году.

В своем письме в Королевское общество он рассказал, что в космосе может существовать множество таких недоступных наблюдению объектов радиусом в 500 солнечных, но с плотностью Солнца, гравитация которых не позволит свету выйти наружу.

Однако эта гипотеза вскоре была забыта, поскольку в рамках классической физики скорость света не имеет фундаментального значения. И только после того, как в 1905 году Альберт Эйнштейн в своей специальной теории относительности (СТО) использовал разработки электродинамики Лоренца, скорость света оказалась предельной, которую может развивать физическое тело. Это радикально изменило значение черных дыр в теоретической физике.

Фактически существование черных дыр было доказано только в 2015 году, а первый снимок их тени был сделан в апреле 2019 года — многие научные эксперты признали это открытие главным научным прорывом последнего десятилетия.

Существует несколько типов черных дыр:

  • Черная звезда звездной массы. Такие объекты, согласно общепринятым гипотезам, возникают в результате коллапса звезды. Минимальная масса тела, которая должна создать такой объект, составляет около трех солнечных.
  • Черная звезда средней массы. Промежуточный этап черной дыры, которая увеличилась за счет поглощения в себя газовых скоплений либо соседней звезды в системах парных звезд.
  • Сверхмассивные черные дыры. Объекты с массой с 10 5 –10 11 масс Солнца с достаточно невысокой плотностью и слабыми приливными силами. Именно такая черная дыра находится в центре Млечного пути.
  • Ультрамассивные черные дыры. Достаточно редкое явление во Вселенной. Например, в центре галактики Holm 15A, самой яркой в скоплении галактик Абель, ученые недавно обнаружили ультрамассивную черную дыру с массой в 40 млрд солнечных. Пока это самый тяжелый объект во Вселенной, известный ученым. Обнаружить объект исследователям удалось в ходе наблюдений за движением звезд в этой галактике. Его масса вдвое больше, чем у предыдущих рекордсменов. Кроме того, он в 10 000 раз массивнее, чем черная дыра Стрелец А* в центре Млечного пути.

Никто не знает, поскольку наблюдать их достаточно сложно, и человечество пока находится только в самом начале изучения этих космических объектов. Точно известно, что в Млечном пути ученые обнаружили около десятка, однако в нашей галактике до 400 млрд звезд, из которых каждая тысячная имеет достаточно массы, чтобы образовать в конце своего существования черную дыру.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.