Что такое вирусная популяция

  • 6559
  • 5,0
  • 0
  • 5



Вопрос о происхождении вирусов

Существует три основные теории возникновения вирусов [1]:

Зарождение жизни. Идея последнего универсального общего предка: каким он мог бы быть и что ему предшествовало?


Рисунок 1. Схема трехдоменной классификации, предложенная Вёзе. В основании этой схемы должен находиться последний универсальный общий предок (англ. last universal common ancestor, LUCA). Рисунок из Википедии.

Самый сильный аргумент в пользу существования LUCA — сохранившаяся общая система экспрессии генов (передачи наследственной информации от гена с образованием РНК или белков), одинаковая для всех живущих организмов. Все известные клеточные формы жизни используют один и тот же генетический код из 20 универсальных аминокислот и стоп-сигналов, закодированных в 64 кодонах (единицах генетического кода). Трансляция генетической информации в процессе синтеза белков по заданной матрице выполняется рибосомами, состоящими из трех универсальных молекул РНК и примерно 50 белков, из которых 20 так же одинаковы для всех организмов.

В 2010 году американский биохимик Даглас Теобальд математически проверил вероятность существования LUCA [6]. Он выбрал 23 белка, встречающихся у организмов из всех трех доменов, но имеющих разную структуру у различных видов. И исследовал эти белки у 12 различных видов (по четыре из каждого домена), после чего использовал компьютерное моделирование различных эволюционных сценариев, чтобы понять, при каком из них наблюдаемая картина будет наиболее вероятной. Оказалось, что концепция, включающая существование универсального предка, значительно вероятнее концепций, где его нет. Еще более вероятна модель, основанная на существовании общего предка, но допускающая обмен генами между видами [7].

Предположение о том, что LUCA был прокариотической клеткой, похожей на современные, часто принимается по умолчанию. Однако мембраны архей и бактерий имеют разное строение (рис. 2). Получается, что общий предок должен был обладать комбинаторной мембраной. Новая информация о мембранах LUCA появилась в 2012 году, когда несколько групп ученых подробно проанализировали историю генов всех ферментов биосинтеза компонентов липидов у бактерий, архей и эукариот [8].


Родственными у архей и бактерий оказались ферменты для синтеза терпеновых спиртов и пришивания полярных голов к спиртам. Значит, эти реакции мог проводить и LUCA. Проще всего было предположить, что липиды LUCA состояли из одного остатка терпенового спирта, остатка фосфата и полярной группы (серина или инозитола). Подобные липиды были синтезированы искусственно. Образующиеся из них мембраны обладают высокой подвижностью по сравнению с современными мембранами, хорошо пропускают ионы металлов и малые органические молекулы. Это могло позволять древним протоклеткам поглощать готовую органику из внешней среды даже без транспортных белков.

Реконструкции LUCA методами сравнительной геномики указывают на то, что это должен быть сложный организм без обширного ДНК-генома (геном, состоящий из нескольких сотен РНК-сегментов или ДНК провирусного типа). Но даже если считать возможность существования общего предка доказанной, остается загадкой, в какой среде он мог бы появиться.

Предполагается, что идеальные условия для формирования жизни существовали вблизи термальных геоисточников (морских или наземных) в виде сети неорганических ячеек, обеспечивающих градиенты температуры и рН, способствующих первичным реакциям, и предоставляющих универсальные каталитические поверхности для примитивной биохимии [10].

Эти отсеки могли быть населены разнородной популяцией генетических элементов. Вначале сегментами РНК. Затем более крупными и сложными молекулами РНК (один или несколько белок-кодирующих генов). А позднее и сегментами ДНК, которые постепенно увеличивались (рис. 3).


Такие простейшие генетические системы использовали неорганические соединения из раствора и продукты деятельности других генетических систем. Сначала они должны были подчиняться индивидуальному отбору ввиду большого разнообразия. Но ясно, что важным фактором такого отбора была способность передавать генетическую информацию, то есть, копировать себя. Присутствие одновременно в одной ячейке молекул, способных копировать РНК, кодировать полезные белки и управлять синтезом новых молекул, давало больше шансов выживать в каждой отдельной ячейке. И в такой системе рано или поздно должны были появиться паразитирующие элементы. А если это так, то вирусные элементы стоят у самых истоков эволюции [11].

Возникновение паразитов — неизбежное последствие эволюционного процесса


Рисунок 4. Схематическое представление структуры модели эволюции РНК-подобной системы. На втором этапе цепочки последовательностей начинают соединяться комплементарными связями сами с собой. В результате у двух видов (cat-C и cat-A) возникает вторичная структура молекулы, которая обладает каталитическим свойством. Она ускоряет собственную репликацию (или репликацию несвернувшихся соседей). Два вида при этом приобретают паразитические свойства (par-G и par-U). Пояснения в тексте. Рисунок из [12].

Таким образом, паразитарные репликаторы способствуют эволюции разнообразия, вместо того, чтобы мешать этому разнообразию. Это также делает существующую систему репликатора чрезвычайно стабильной при эволюции паразитов.

Согласно гипотезе Черной Королевы, чтобы поддержать свое существование в постоянно эволюционирующем мире, вид должен реагировать на эти эволюционные изменения и должным образом приспосабливаться к среде. Поэтому, если мы говорим о вирусах как о паразитах, мы обязаны представлять себе взаимоотношения вируса с хозяином. В борьбе с вирусом хозяева развивают новые защитные механизмы, а паразиты отвечают, развивая механизмы для атаки и взлома защиты. Этот процесс может длиться бесконечно либо до вымирания одной из противоборствующих сторон. Так множественные системы защиты составляют существенную часть геномов всех клеточных организмов, а взлом защиты — одна из основных функций генов у вирусов с большими геномами*.

Механизмы клеточной защиты против вирусов

Механизмы защиты от вирусов стандартны, поскольку все вирусы уникальны, и приспособиться к каждому не представляется возможным. Это такие механизмы как:

  1. Деградация РНК (вирусных и клеточных) — РНК-интерференция;
  2. Угнетение синтеза белков (вирусных и клеточных);
  3. Ликвидация зараженных клеток — апоптоз (программируемая клеточная смерть);
  4. Воспаление.

Получается, что клетка борется с вирусом, нарушая собственные обмен веществ и/или структуру. Защитные реакции клетки — это в основном самоповреждающие механизмы.

Вирус заражает конкретную клетку потому, что его механизмы нападения направлены именно против данного типа клеток. Это такие механизмы как:

  1. Угнетение синтеза клеточной РНК;
  2. Угнетение синтеза клеточных белков;
  3. Нарушение клеточной инфраструктуры и транспорта;
  4. Подавление/включение апоптоза и других видов клеточной смерти.

Схемы защитных приемов клетки и противозащиты вирусов во многом идентичны. Вирусы и клетки применяют одни и те же приемы. Для подавления синтеза вирусных белков клетка использует интерферон, а чтобы подавить образование интерферона, вирус угнетает синтез белков.

Поскольку узнавание вируса неспецифическое, клетка не может знать намерения конкретного вируса. Она может бороться с вирусом лишь стандартными приемами, поэтому ее оборонные действия часто могут быть чрезмерными.

Понятие о вирусном геноме, типы вирусных генов, концепция генов-сигнатур

В исследовании, проведенном вирусологом Евгением Куниным и его коллегами [16], анализ последовательностей вирусных геномов выявил несколько категорий вирусных генов, принципиально отличающихся по происхождению. Можно обсуждать, какая степень дробности классификации оптимальна, но четко различаются пять классов, укладывающихся в две более крупные категории.

Гены с четко опознаваемыми гомологами у клеточных форм жизни:

  1. Гены, присутствующие у узких групп вирусов (обычно это гены, гомологичные генам хозяев этих вирусов).
  2. Гены, консервативные среди большой группы вирусов или даже нескольких групп и имеющие относительно отдаленные клеточные гомологи.

Таким образом, отличительные особенности генов-сигнатур:

  • Происхождение из первичного пула генов;
  • Наличие лишь очень отдаленных гомологов среди генов клеточных форм жизни, из чего можно сделать вывод, что они никогда не входили в геномы клеточных форм;
  • Необходимость для репродукции вирусов.

Из всего вышесказанного следует, что эти гены переходили от вируса к вирусу (или к элементу, подобному вирусу) на протяжении четырех миллиардов лет эволюции жизни, а вирусные геномы появились благодаря перемешиванию и подгонке друг к другу генов в гигантской генетической сети, которую представляет собой мир вирусов. Многочисленные гены клеточных форм жизни также пронизывают эту сеть, прежде всего благодаря геномам крупных вирусов, таких как NCDLV и крупным бактериофагам, которые позаимствовали множество генов от своих хозяев на разных этапах эволюции. Однако большинство заимствованных генов сами по себе не критичны для репликации и экспрессии вирусного генома (исключая некоторые случаи возможного неортологичного замещения генов-сигнатур); обычно эти гены участвуют во взаимодействии между вирусом и хозяином. Таким образом, несмотря на интенсивный взаимообмен генами с хозяевами, вирусы всегда происходят от других вирусов.

Вирусы, встроенные в геном, и горизонтальный перенос генов

В процессе эволюции многие вирусы встроились в геномы клеточных форм жизни путем горизонтального переноса генов (ГПГ). Впервые горизонтальный перенос был описан в 1959 году, когда ученые продемонстрировали передачу резистентности к антибиотикам между разными видами бактерий. В 1999 году Рави Джайн, Мария Ривера и Джеймс Лейк в своей статье писали о произошедшей значительной передаче генов между прокариотами [17]. Этот процесс, по-видимому, оказал некоторое влияние также и на одноклеточные эукариоты. В 2004 году Карл Вёзе опубликовал статью, в которой утверждал, что между древними группами живых организмов происходил массивный перенос генетической информации. В древнейшие времена преобладал процесс, который он называет горизонтальным переносом генов. Причем, чем дальше в прошлое, тем это преобладание сильнее [18].

Горизонтальный перенос генов — процесс, в котором организм передаёт генетический материал другому организму, не являющемуся его потомком. Горизонтальная передача генов реализуется через различные каналы генетической коммуникации — процессы конъюгации, трансдукции, трансформации, переноса генов в составе плазмидных векторов, вирусов, мобильных генетических элементов (МГЭ).

Трансдукция — перенос бактериофагом (агентами переноса генов, АПГ) в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг [19]. Такой бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). В зависимости от типа трансдукции — неспецифической (общей), специфической или абортивной, геном фага или хозяина-бактерии может быть изменен тем или иным образом:

  • При неспецифической трансдукции (рис. 5) ДНК клетки-хозяина включаются в частицу фага (дополнительно к его собственному геному или вместо него);
  • При специфической трансдукции гены фага замещаются генами хозяина;
  • При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в ДНК хозяина-реципиента, а остаётся в цитоплазме и не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток и затем теряется в потомстве.


Рисунок 5. Схема общей трансдукции. Фото с сайта vkjournal.ru.

Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом λ. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции.

Вот несколько примеров важных эволюционных событий, связанных с молекулярным одомашниванием:

  1. Ферменты теломеразы, служащие для восстановления концевых участков хромосом, возможно, ведут свое происхождение от обратных транскриптаз, кодируемых ретровирусами и ретротранспозонами [22];
  2. Белки RAG, играющие ключевую роль в системе адаптивного иммунитета, по-видимому, происходят от прирученных транспозаз — ферментов, кодируемых транспозонами;
  3. Ген Peg10, необходимый для развития плаценты, был позаимствован древними млекопитающими у ретротранспозона (рис. 6) [23].


Рисунок 6. Роль гена Peg10 в эмбриональном развитии. Ученые под руководством Рюичи Оно из Токийского медицинского университета Японии показали, что у мышей с выключенным геном Peg10 нарушается развитие плаценты, от чего эмбрион погибает через 10 дней после зачатия [24]. Фото с сайта flickr.com.

В 2008 году в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии [25]. Это гены белков оболочки ретровируса. Каждый из них входит в состав своего эндогенного ретровируса (ЭРВ), причем все остальные части этих ЭРВ давно не функционируют.

Вирусные гены ENVV1 и ENVV2 у человека и обезьян работают в плаценте и, скорее всего, выполняют следующие функции:

Таким образом, как минимум три полезных применения нашли себе вирусные гены в плаценте приматов. Это показывает, что генетические модификации, которым ретровирусы подвергают организмы, в долгосрочной перспективе могут оказаться полезными или даже определить развитие вида. И с учетом всего вышесказанного древо доменов должно выглядеть как на схеме ниже (рис. 7).


Рисунок 7. Горизонтальный перенос генов в рамках трехдоменного дерева. Рисунок из [26].

Заключение

Возникновение паразитов — обязательная черта эволюционирующих систем репликаторов, а соревнование хозяев и паразитов движет эволюцию тех и других. Любой организм является результатом миллионов лет борьбы клеток с невероятно разнообразным миром вирусов. Их действия и их эволюция пронизывают всю историю клеточной эволюции, и сейчас меняется само наше представление о них. Когда-то вирусы считали деградировавшими клетками, но чем больше мы узнаем о вирусах, тем очевиднее, что их роль в общей эволюции значительна. И невероятно много нам еще предстоит узнать.

Статья написана в соавторстве с Евгенией Щепенок.

Коронавирус становится поводом пошутить над незнакомцем, ему посвящают мемы, о нем слагают песни. Вирус проникает не только в организмы живых существ, но и в поп-культуру. Однако пройдет время, и о нем все забудут, как когда-то перестали говорить о вирусе Эбола, атипичной пневмонии и оспе.

Север Туркмении, 1980-е годы. В Средней Азии возникла вспышка ранее неизвестного вируса. Обстановка сложная и напряженная. Вирус передается через зараженную воду. Из-за ее употребления количество заболевших резко растет. В большинстве случаев болезнь протекает относительно благополучно, но ужас в том, что умирают в основном женщины в третьем триместре беременности.


Михаил Фаворов,
эпидемиолог, доктор медицинских наук

Сегодня Михаил Фаворов живет в США, занимает пост президента компании DiaPrep System Inc и продолжает активно работать в области диагностики, контроля и профилактики инфекционных заболеваний.

Вирус — простейшая форма жизни. Принято считать, что если он находится внутри человека или животного, то становится живым существом — размножается и обменивается информацией. Но когда вирус находится вне организма, он считается неживым. О вирусах мы узнали сравнительно недавно, около 100 лет назад. М икробиолог Дмитрий Ивановский опубликовал исследование о существовании некой субстанции, которая проходит через фильтры, задерживающие бактерии, и назвал ее вирусом. В то время как чума человечеству известна многие тысячелетия, у нее другая природа — она вызывается бактериями, которые являются более сложным и крупным организмом. Ее распространение было связано с низким уровнем жизни и плохой гигиеной. Процент летальности достигал 25%, то есть при легочной форме погибал каждый четвертый.


Среди вирусных инфекций самой страшной была оспа, которая затронула все страны мира. Вызывалась она вирусом натуральной оспы. Вакцину удалось изобрести благодаря случайному знакомству с коровьей оспой. Вирус животных, которые выступали переносчиками, вводили в организм человека, но вакцинированные не заболевали человеческой формой болезни: организм защищали антитела введенного вируса. Уникальность натуральной оспы в том, что это антропонозный вирус — им болели только люди. Поэтому, когда произвели вакцину, оспу удалось искоренить. В 1950-х годах в Африке были вакцинированы последние контактировавшие с больными, а с 1978 года вирус был полностью ликвидирован. Оспа исчезает, когда у последнего заболевшего появляются антитела, — он выздоравливает и перестает быть переносчиком.

Рецепты с летучей мышью


Тепло наших тел

По уровню плотности населения Китай и Индия превосходят все остальные регионы планеты, а разнообразие видов животных в Африке настолько велико, что большинство из нас вряд ли догадываются о существовании некоторых из них, например окапи, виверр, руконожек. Как редкие животные, так и плотность населения становятся дополнительными стимулами высокой скорости распространения заражения. Вирусы не поражают отдельно китайцев или представителей других наций, вирусы аполитичны и не имеют вероисповедания. Они умеют приспосабливаться к любым изменениям среды не хуже человека. Все, что им нужно, — тепло наших тел и, возможно, определенные рецепторы.

Вспышка эпидемий — это не просто случайность, а стечение обстоятельств.

Все закрыто: рынки, магазины, метро. Остановки общественного транспорта абсолютно пусты. По тротуарам проплывает только мусор, гонимый ветром, исчезающий в желтоватой дымке. Странно, если учесть, что в городе проживают миллионы человек. Изредка на улице появляются люди в респираторных масках, некоторые сделаны из подручных средств. Однажды увидев такую картину, вряд ли возможно спутать с чем-то эпицентр распространения респираторного заболевания, и защищаться надо незамедлительно.

Чтобы обезопасить себя и свою семью во время респираторной эпидемии, главное — находиться на расстоянии не ближе 2 м от заболевшего, чихающего или кашляющего человека, мыть руки каждые два часа, проветривать помещения, минимально контактировать с людьми.


История человечества насчитывает десятки тысяч кровавых войн, но самые страшные по потерям, пожалуй, — войны с паразитами. По некоторым данным, от чумы умерло больше людей, чем в результате всех войн, вместе взятых, — около 186 млн человек. От одной Юстиниановой чумы, первой зарегистрированной в истории, погибли 100 млн человек. Разработка защиты от биологической угрозы требует больших затрат, поэтому вакцины создаются только для тех вирусов, которые представляют реальную опасность. Более того, к некоторым вакцинам вирусы привыкают, становятся устойчивыми и меняют свою структуру, поэтому человечеству приходится постоянно быть начеку и придумывать что-то новое.

Респираторная маска вполне может защитить, но проблема в том, что надежна она всего 20 минут.

На уроках биологии нам говорили, что жизнь — это способ существования нуклеиновых кислот. Один из вариантов существования нуклеиновых кислот — это вирусы, которые живут на других организмах. Они совершенно не заботятся о нашем благополучии, они пытаются приспособиться, как и все живые существа на планете. Единственное, за что стоит их благодарить, — эволюционное совершенство иммунной системы человека. Веками, когда появлялось какое-либо заражение, организм человека вырабатывал антитела и формировал клеточный иммунитет. Все знают, что если держать человека в стерильной среде, а потом выпустить на улицу, он вскоре умрет, потому что у него не будет механизма выработки защиты. Но это не цель существования вирусов, скорее побочный эффект.


Прогнозировать возникновение вспышек вирусов еще сложнее, чем рассуждать о высших смыслах. Это всегда уникальная ситуация, которая происходит в результате изменения состояния окружающей среды, при которой человек попадает в новые условия взаимодействия с другими видами животных. А сегодня антропогенное воздействие на окружающую среду достигло абсолютно несопоставимых масштабов по сравнению с предыдущими поколениями, к тому же человек как вид постоянно растет. У ученых есть возможность наблюдать за попытками вирусов совершить кроссвидовой переход благодаря лабораторным методам слежения. Врачи ликвидировали оспу и почти победили вирус полиомиелита — это внушает надежду, что с новым вирусом можно будет хотя бы договориться. Как бы ни сложились эти взаимоотношения, стоит помнить: пока человек будет существовать как вид, всегда найдутся те, кто захочет на нем паразитировать.

Как защититься от коронавируса? Узнайте здесь.

Опасения, что новый коронавирус может мутировать и стать куда более заразным и смертоносным, вполне объяснимы. Но при этом они совершенно необоснованны.

Действительно, вирусы имеют склонность к мутации, поскольку распространяются по всему миру и приспосабливаются к разным температурным и климатическим условиям. Способность мимикрировать дает шанс инфекции приобрести во время мутации новые вредоносные качества. Однако, как доказано наукой, вероятность такого поворота событий крайне мала. Стоит ли бояться мутации коронавируса, разбирался научный портал Elemental.

БЕССМЫСЛЕННЫЕ ПРОГНОЗЫ

- На самом деле мутация является обычным делом для РНК-вируса, - поясняет доцент кафедры эпидемиологии Йельского Института здравоохранения Нейтан Грубау в своем материале, опубликованном в журнале Nature Microbiology. - SARS-CoV-2 является РНК-вирусом, потому что его генетический материал - это РНК, а не ДНК .

Поэтому специалист призывает общественность и своих коллег ученых не тратить время на размышления и прогнозы по поводу потенциальных последствий мутаций COVID-2019.

- Скорее всего, эти прогнозы окажутся бессмысленны, и к тому времени, когда мы сможем проверить, произошла ли мутация на самом деле, эпидемия уже закончится, - добавляет Грубау.

НЕЙТРАЛЬНЫЕ МУТАЦИИ

Так почему все-таки не стоит беспокоиться о мутации коронавируса? Перед тем, как вирус самовоспроизводится, он всякий раз делает копию своего генома. Для этого используется фермент, который называется РНК-полимеразой. Но он довольно часто допускает ошибки при копировании. И вот эти случайные ошибки в геноме вируса-копии и называются мутациями. Но далеко не все мутации оказывают значимое влияние на сам вирус и на ход эпидемии в целом.

Некоторые мутации вообще не оказывают никакого эффекта на качества вируса. Их называют нейтральными мутациями. Они могут передаваться из поколения в поколение и не вызывать никаких изменений в способности вируса выживать или заражать здоровые клетки. Большинство мутаций, грубо говоря, даже вредны для вируса, так как способны ослабить и даже убить его прежде, чем он снова сможет себя скопировать.

ОДИН НА МИЛЛИОН

Конечно, есть мутации, благодаря которым вирус становится более передаваемым. Но для того, чтобы такая мутация в одной частице смогла оказать влияние на всю популяцию вируса (то есть мы могли бы заявить о возникновении нового штамма), то она должна передаться и будущим копиям вируса. А чтобы это произошло, мутация должна также улучшить способность вируса к выживанию и размножению.

За те качества вируса, которые больше всего пугают людей - это заразность вируса и его способность вызывать осложнения (например, COVID-2019 приводит к вирусной пневмонии), отвечает множество генов. А это означает, что изменение этих признаков требует множества случайных, избирательно выгодных мутаций, которые должны происходить в одном и том же геноме вируса. И вероятность того, что это произойдёт за короткий промежуток времени, чрезвычайно мала.

ОТ 4 ДО 10 РАЗЛИЧИЙ

Карантин - это НЕ каникулы.В Москве ввели карантин. Но жители столицы решили, что это каникулы Такая безответственность поставила под удар не только самих нарушителей, но и всех окружающих. Поэтому c 30 марта власти запретили москвичам выходить из дома без веских причин

Поскольку вирус атипичной пневмонии, который бушевал в 2002-2003 годах, не отличался повышенной склонностью к мутации, то все вакцины, которые сейчас создаются, защищают людей довольно долго. Так как вирус SARS схож с COVID-2019, то есть вероятность, что ему также характерна медленная мутация. Пока эти предположения подтверждаются. Молекулярный генетик из Лаборатории прикладной физики Университета Джона Хопкинса Питер Тилен, который изучал штаммы SARS-CoV-2, заявил, что существует от 4 до 10 генетических различий между штаммами COVID-2019, бушующими в китайском городе Ухань и на территории США . А это довольно небольшое количество.

Медленная мутация вируса может сыграть на руку всем разработчикам вакцины. Не исключено, что долгожданное лекарство будет защищать организм человека на протяжении длительного времени, точно так же, как это делает вакцина против атипичной пневмонии. В этом случае не потребуется регулярно изобретать все новую вакцину, как это происходит ежегодно перед эпидемией гриппа. Вирус гриппа обладает уникальной способностью перестраивать свой собственный геном, и это никак не связано с мутацией.

Конечно, вероятность, что новый коронавирус мутирует и превратится в куда более смертоносную инфекцию, остается. Но этот шанс мизерный.

- Даже если мутация, влияющая на заразность или тяжесть заболевания, произойдет, то это все равно ничего не изменит, - констатирует Нейтан Грубау. - К тому времени, когда мы сможем установить это, пандемия, скорее всего, уже закончится. На самом деле, мы ничего не можем сделать, кроме того, как пропагандировать социальное дистанцирование, соблюдать строгий санитарно-эпидемиологический надзор, поддерживать работу больниц, отслеживать контакты с зараженными и разрабатывать вакцину.

ГЛАВА 10. ЭКОЛОГИЯ ВИРУСОВ

ВИРУСНАЯ МИМИКРИЯ

МЕХАНИЗМЫ УХОДА ВИРУСОВ ОТ ИММУННОГО КОНТРОЛЯ

Иммунная система не всегда обеспечивает надежную противовирусную защиту. Это объясняется тем, что многие вирусы имеют в своем арсенале средства, которые позволяют им более или менее успешно преодолевать иммунную защиту организма. Причем те или иные вирусы используют различные стратегии ухода от иммунного надзора. Одни вирусы обходят иммунный контроль со стороны организма хозяина за счет генерации мутантных вариантов, что приводит к нарушению презентации вирусных антигенов МНС I и позволяет этим вирусам избежать распознавания ЦТЛ. Другие вирусы непосредственно поражают лимфоидные клетки. Инфицирование вирусами лимфоцитов угнетает активность ЦТЛ и способствует становлению персистентной инфекции и латенции. Иммунные реакции оказываются не в состоянии полностью ликвидировать инфекцию, и вирус длительно персистирует в организме, не вызывая деструкции клеток.

Некоторые вирусы имеют гены, сходные с генами клетки-хозяина. Установлено, что эти гены кодируют белки, используемые вирусом для противодействия иммунным реакциям организма. Генетическое картирование их и установление гомологичных последовательностей с клеточными генами позволили считать, что они были захвачены вирусами в процессе эволюции и модифицированы в пользу вируса. Это могут быть гены цитокинов, их рецепторов, ростовых факторов, белков МНС I и др. Многие из них очень похожи на соответствующие клеточные гены, другие, имея незначительную долю гомологии, тем не менее, имеют функциональное сходство. Функционирование таких генов может вести к ингибированию синтеза или процессинга клеточных белков, важных для иммунитета; блокированию связывания антивирусных цитокинов с клеточными рецепторами; блокированию передачи внутриклеточных сигналов, что оказывает влияние на природу иммунного ответа.

Вирусы поражают всё живущее на Земле: архей, которым уже 3,5 млрд. лет, бактерии, водоросли, грибы, простейших, беспозвоночных, позвоночных, в том числе – людей. Уже известны более 500 вирусов, поражающих человека, начиная с внутриутробного периода. Порядка 200 вирусов поражают желудочно-кишечный тракт, более 100 – органы дыхания, около 20 – кожу и слизистые, более 100 – ЦНС. В год только от острых вирусных инфекций в мире гибнет более 10 млн. человек. Столько же от их последствий.

- спектр чувствительных к вирусу хозяев в природе;

- выживание вируса в объектах окружающей среды;

- передача вируса в цепи чувствительных хозяев и природные векторы (переносчики);

- возможность повторного инфицирования организма, имеющего некий иммунитет к возбудителю;

- величина восприимчивой популяции хозяина, которая необходима (или достаточна) для поддержания циркуляции вируса в природе; и

- определение популяций хозяина, особенно часто подверженных инфицированию, что позволяет выделять их как потенциальные резервуары данной инфекции.

Вирусы необходимо рассматривать в качестве организмов, подчиняющихся законам эволюции и, следовательно, экологии. Популяции вида, экологически или географически изолированные друг от друга, сходны, но не идентичны. Каждая популяция характеризуется генофондом, определяющим ее свойства. Изучение генофонда популяций и направленности его изменений в эволюционирующих популяциях имеют исключительно важное значение в раскрытии причин, ведущих к возникновению эпизоотий и эпидемий.

Традиционные направления эпидемиологических исследований накопили в отношении большинства вирусных инфекций достаточно большой опыт по борьбе с уже возникшими эпидемиями. Эффектным примером является ликвидация заболеваемости оспой среди людей в мире. Но в большинстве случаев причины, ведущие к возникновению эпидемии, остаются до сих пор невыясненными. Как происходит выплеск вирусных популяций из обычных экологических ниш (начало эпидемии), где популяция сохраняется в период между эпидемиями (сохранение возбудителя в межэпидемическом периоде), почему время от времени меняются свойства популяции, что часто определяет развитие эпидемий? Ответы на эти вопросы позволили бы улучшить составление прогнозов возникновения вспышек и наметить наиболее рациональные и эффективные пути их предупреждения, тем самым снизив ущерб. Это основная конечная цель исследований по экологии вирусов для практики. В теоретическом плане эти исследования должны раскрыть основные закономерности, обеспечивающие сохранение вирусов как биологических видов в биосфере, выявить пути их эволюционной изменчивости, определить основные законы движения генетического материала в вирусных популяциях и формирования их генофонда.

Эволюция вирусов в эру научно-технического прогресса в результате мощного давления факторов, определяемых ускоряющимися темпами антропогенного преобразования экосистем, протекает значительно быстрее, чем прежде. В качестве примеров таких интенсивно развивающихся в современном мире процессов можно указать на загрязнение внешней среды промышленными отходами, повсеместное применение пестицидов, антибиотиков, вакцин и других биопрепаратов, урбанизацию с огромной концентрацией населения в современных мегаполисах, развитие современных транспортных средств, хозяйственное освоение ранее неиспользуемых территорий, создание индустриального животноводства с крупнейшими по численности и плотности популяций животных хозяйствами. Все это приводит к значительным нарушениям в структуре экосистем, способствует включению в эпидемический процесс ранее неизвестных возбудителей, изменению свойств и путей циркуляции известных ранее вирусов, а также реактивности и восприимчивости человеческих популяций.

Возникновение, развитие и спад эпизоотической и эпидемической волн определяются характером взаимоотношений между популяциями возбудителя и восприимчивого хозяина. В процессе эволюции складываются наиболее удачные, с точки зрения сохранения вида, взаимоотношения между вирусами и хозяевами. Это чаще всего соответствует среднему уровню вирулентности возбудителя и восприимчивости хозяина. В ряде случаев наиболее удачным для вирусной популяции типом взаимоотношений с хозяевами является персистирующая инфекция. Особенно важное значение такой тип взаимоотношений имеет в период, неблагоприятный для передачи данного возбудителя и для состояния популяции хозяев. Персистенция вирусов в организме птиц и летучих мышей может обеспечить диссеминацию адаптированных к этим хозяевам возбудителей на огромной территории в период сезонных миграций. Вирусная персистенция в ряде случаев приводит к изменению свойств вирусной популяции. Хронические и латентные формы, вероятно, играют решающую роль в сохранении вирусов в межэпидемический период. Но эпидемия и эпизоотия чаще всего являются лишь эпизодом в существовании вирусной популяции.

Одним из важнейших условий в возникновении вспышки заболевания является рост плотности восприимчивой к данному возбудителю популяции хозяев. Существует пороговая плотность популяции, допускающая развитие эпизоотии. Человек играет значительную роль в этих процессах, постоянно изменяя структуру экосистем, создавая экосистемы с новой, необычной структурой. Организация, например, животноводческих хозяйств с очень высокой плотностью животных определяет возможность возникновения обширных эпизоотий, создавая тем самым предпосылки к развитию эпидемических ситуаций.

До сих пор существует точка зрения об исключительности вирусов, поражающих человека. Трудно назвать вирусные инфекции человека, возбудители которых не имели бы гомологичных или аналогичных схем циркуляции в мире животных. Это имеет серьезные эпидемиологические последствия. В случае природно-очаговых вирусных инфекций человека вследствие отсутствия адаптации к возбудителям население обладает высокой чувствительностью к ним. Это всегда таит угрозу возникновения вспышек среди контингентов, попавших на неосвоенную территорию. В ряде случаев эти вспышки, если территория была недостаточно заблаговременно обследована, могут быть вызваны неизвестными ранее эндемичными вирусами.

Наличие природных резервуаров возбудителя делает малореальной, во всяком случае, на современном этапе возможность его искоренения. С другой стороны, разумно изменяя экологическую обстановку в очаге инфекции, в ряде случаев можно создать условия, несовместимые с возможностью существования данных вирусных популяций.

За время становления человеческого общества (примерно 400 поколений людей на протяжении около 10 тыс. лет) человек постоянно соприкасался с возбудителями диких, а затем и домашних животных. Часть из них адаптировалась к человеческим популяциям, некоторые превратились со временем в облигатные или факультативные антропонозы. Другие остались зоонозами, сохранив способность вызывать как эпизоотический, так и эпидемический процесс. Таким образом, эволюция возбудителей инфекционных болезней является результатом взаимодействия эволюционирующих популяций возбудителей и хозяев в определенных экосистемах, подвергающихся изменениям под влиянием природных, а последние 10 тыс. лет и антропогенных факторов.

Для многих биологических видов характерно перемещение видов в целом или некоторых его популяций на более или менее значительные расстояния. Эти процессы ведут к перемещению адаптированных к ним возбудителей. При этом могут возникать новые природные очаги инфекций, а в ряде случаев – драматическое обострение эпизоотической и эпидемической ситуации. Очаги могут быть эфемерными, сезонными или же перманентными, существующими тысячи либо миллионы лет.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.