Бактерии или вирусы и их роль в жизни человека

Паразиты, бактерии и вирусы были бичом человечества на протяжении всей его истории, но также изменили ее и повлияли на нашу эволюцию. Паразиты помогли нашей иммунной системе обрести необходимый стимул и заработать, а смиренные бактерии целиком и полностью определили правила жизни на этой планете. Иногда кажется, что мы, люди, просто игрушки в их руках. Есть мнение, что пришельцы из далеких миров могут не понять, кто на этой планете настоящий хозяин. В любом случае микроорганизмы делают невероятные вещи, чтобы помочь человечеству.


Африканские вирусы помогли нам выжить


Кроме того, они, возможно, сыграли роль в том, что среди конкурирующих видов гоминид именно Homo sapiens вышли на первое место. В то время как наш вид развивался, разного рода заболевания и паразиты нападали на генетическое разнообразие и отсеивали непригодные модели. Как только первый Homo sapiens покинул континент, он привез с собой свои инфекционные колонии и паразитов.

Вирусные паразиты распространились на других гоминид типа Homo neanderthalensis (неандертальцев), у которых не было заранее выработанной системы защиты от новых заболеваний и структура носа, которая была менее эффективной при фильтрации воздуха и удерживании новых вирусов. Другие виды гоминид вымерли, поскольку не были приспособлены к выживанию в условиях, в которых могли выживать вредные микроорганизмы. Моделирование показало, что если у неандертальцев уровень смертности был хотя бы на 2% выше, чем у людей, этого было бы достаточно, чтобы они вымерли спустя 1000 лет конкуренции. Хотя заболевания, конечно, не были единственным фактором, они сыграли большую роль.

Большинство моделей эволюции человеческих заболеваний утверждают, что их основная часть развивалась в течение эпохи неолита, после того как человек перебрался из Африки и население увеличилось. Таким образом, есть некоторые доказательства этого избирательного вирусного давления. Многие из этих ранних вирусов были так успешны, что их гены буквально стали частью нашей ДНК. К примеру, человеческий геном содержит борнавирус, который стал его частью около 40 миллионов лет назад. В общей сложности ученые выделили около 100 000 элементов человеческой ДНК, которые могли быть частью вирусов, так называемая мусорная ДНК. Вирусы, которые составляют большую часть нашей мусорной ДНК, называются эндогенными ретровирусами.

Современное использование пиявок и личинок


Тем не менее в 70-80-х годах пиявки вернулись. Косметические и реконструктивные хирурги выяснили, что их можно эффективно использовать для кровопускания из опухших лиц, черных глаз, конечностей и прочего. Они также полезны при повторном присоединении небольших частей тела вроде ушей и лоскутов кожи, поскольку отсасывают кровь, которая может свернуться и прервать процесс заживления. Пиявки спасают людей от ампутации и даже могут облегчить боль при остеоартрите. Даже ветеринары иногда используют их.

Личинки, с другой стороны, являются природными очистителями. Они прекрасно подходят для разъедания мертвой или зараженной плоти, открывая здоровые ткани в процессе так называемой хирургической обработки раны. Также они оказались эффективным средством для лечения язв, гангрен, рака кожи и ожогов.

Паразиты и иммунная система совместно защищают нас от аллергии


Самая интересная часть в том, что как только паразиты и безвредные микроорганизмы, присутствующие в воде и почве, были в значительной степени удалены из своей естественной среды внутри нас в процессе развития цивилизации и медицины, наша иммунная система фактически сверхкомпенсировала эту утрату, что привело к аллергии и увеличению шансов возникновения астмы и экземы.

Первым гипотезу старых друзей предложил Грэм Рук из Университетского колледжа в Лондоне в 2003 году.

Некоторые люди доводят гипотезу старых друзей к ее логическому заключению: если удаление паразитов из общества приводит к проблемам со здоровьем, нужно вернуть их назад. В 2008 году профессор неврологии Университета Висконсина Джон Флеминг провел клиническое исследование, в ходе которого заражал некоторых пациентов с рассеянным склерозом паразитирующими червями и проверял эффективность этого метода. В течение трех месяцев у пациентов, которые в среднем имели 6,6 активных очагов среди нервных клеток мозга, уровень заболевания упал примерно в два раза. Когда испытание закончилось, количество очагов вернулось к 5,8 за два месяца.

Паразитарная терапия все еще находится в фазе эксперимента, и, скорее всего, на данный момент имеет негативные последствия, которые перевешивают позитивные. В настоящее время врачебные комиссии классифицируют червей как биологические продукты, которых нельзя продавать, пока не будет доказана их безопасность. Только один вид, Trichuris suis, был одобрен для тестирования нового препарата.

Виротерапия


Методика аналогична той, которая используется для выведения генно-модифицированных растений, только в качестве носителя гена используется вирус. Он уже давно признан в качестве наиболее эффективного средства переноса генов. Эта система используется для производства полезных белков в генной терапии и имеет большой потенциал для лечения иммунологических заболеваний, таких как гепатит и ВИЧ.

Еще в 1950-х годах стало известно, что у вирусов есть потенциал для лечения рака, но появление химиотерапии замедлило прогресс в этом направлении. Сегодня виротерапия на поверку оказывается весьма эффективным средством борьбы против опухолей, поскольку не повреждает здоровые клетки вокруг нее. Клинические испытания онколитической виротерапии показали низкую токсичность и перспективные признаки эффективности. В 2013 году препарат под названием TVEC стал первым лекарством на основе вируса для борьбы с опухолями на поздней стадии.

Использование вирусов для лечения бактериальных инфекций


Поскольку фаги нарушают метаболизм бактерий и уничтожают их, уже давно признано, что они могут играть определенную роль в лечении широкого спектра бактериальных заболеваний. Но из-за инноваций в сфере антибиотиков, фаготерапию снова положили на полку, пока рост резистентных к антибиотикам бактерий не вызвал повышенный интерес в этой области.

Отдельные виды фагов, как правило, эффективны только против небольшого диапазона бактерий или даже одного конкретного вида (основного хозяина), что изначально рассматривалось как недостаток. Но поскольку мы узнали больше о полезных аспектах нашей природной флоры, недостаток превратился в преимущество. В отличие от антибиотиков, которые, как правило, убивают бактерии без разбора, бактериофаги могут атаковать вызывающие заболевание организмы, не нанося вред нашей естественной флоре.

В то время как бактерии могут вырабатывать устойчивость как к антибиотикам, так и к фагам, разработка новых штаммов фагов займет всего несколько недель, а не лет. Фаги также могут проникать в тело, находить цель, а когда бактерии будут уничтожены, прекращать воспроизводство и вскоре вымирать.

Вакцины


Когда вакцина вводится, возбудитель начинает работать, что недостаточно, чтобы размножиться в таком размере, чтобы вызвать заболевание. Тело производит иммунный ответ, убивает возбудителя или разрушая токсин, ответственный за болезнь. Иммунная система организма теперь знает, как бороться с болезнью и будет помнить, если возбудитель снова проникнет в тело. Другими словами, ученые выяснили, как заставить возбудитель помочь своей цели защититься от него. Они даже сделали несколько шагов к разработке вакцин для нескольких форм рака и вируса гепатита B (который вызывает рак печени), вируса папилломы человека типа 16 и 18 (который вызывает рак шейки матки) и метастатический рак предстательной железы у некоторых мужчин.

Благодаря вакцинам, несколько заболеваний были вынуждены виртуально исчезнуть. Оспа остается наиболее известным примером, но полиомиелит, который хоть и не полностью уничтожен, стоит на втором месте. Несколько других заболеваний могут уйти хоть сейчас, если бы вакцины не было так трудно доставить в слаборазвитые страны.

Бактериальная утилизация отходов


Мертвые останки животных и растений, наряду с экскрементами всех организмов, содержат жизненно важные питательные вещества и запасенную энергию. Без возможности вернуть эти питательные вещества, имеющиеся источники были бы быстро исчерпаны. К счастью, многие виды бактерий выбирают именно эти источники энергии, разбивая их на свои маленькие молекулы и возвращая их в почву, откуда они затем повторно входят в пищевую цепочку.

В дополнение к этому процессу люди нашли массу способов использования его аналогов. Бактерии используются в очистке сточных вод, управлении промышленными отходами и очистке нефтяных разливов, утекших фармацевтических препаратов и сточных вод. Они также полезны в развитии аквахозяйств, борьбе с водорослями и биотуалетах. Исследователи и инженеры постоянно ищут способы применения бактерий. Возможно, их даже приспособят для расщепления пластиковых отходов.

Мы бы погибли без кишечных бактерий


Чем больше мы узнаем о полезных штаммах бактерий кишечника, тем больше мы можем включить эти знания в здоровый образ жизни. После того как было установлено, что некоторые кишечные бактерии могут играть определенную роль в ожирении, особую популярность приобрели пробиотики. Пробиотики — это бактерии, которые заменяют ферментированные пищевых продукты и в настоящее время продаются в виде добавок. Бактерии типа некоторых видов бифидобактерий могут создавать высококислотную среду, в которой менее полезные микроорганизмы выжить не могут. Жирная пища и стресс также могут играть роль в здоровье нашей желудочной флоры, убивая полезные бактерии и давая развернуться вредным бактериям, которые вызывают газы, вздутие живота и синдром повышенной кишечной проницаемости.

Бактерии кожи могут быть на передовой иммунитета


Одной из наиболее распространенных бактерий кожи является Staphlococcus epidermis. Известно, что она играет важную роль в борьбе с Leishmania major, причиной опасной болезни под названием лейшманиоз, которая рождает незаживающие язвы. Хорошая бактерия вызывает иммунный ответ под названием IL-1, который тело не может производить самостоятельно. Эти стафилококки стали обязательной частью нашего существования.

Прокариоты, которые населяют пищеварительный тракт, также охватывают и всю наружную поверхность на коже. Наряду с остальной частью нашей полезной микрофлоры кожи, они стали частью нас, когда конкурировали с менее доброжелательными микроорганизмами за право жить. Наряду с иммунными клетками нашей кожи, они защищают нас от болезнетворных бактерий и патогенных грибов, которые хотят в нас жить. Это позволяет нашим органам тратить меньше энергии, защищая наш экстерьер, и больше сосредоточиваться на вещах типа борьбы с вирусами и предраковыми клетками.

Хотя нам еще многому нужно поучиться у них и больше узнать об этих полезных бактериях, в будущем бактерии кожи будут использоваться целенаправленно.

Жизни не было бы без цианобактерий


Цианобактерии были первыми фотосинтезаторами в мире. Они использовали энергию солнца вместе с химическими веществами в первых океанах и инертный азот в атмосфере для пропитания. В качестве продукта отходов они производили кислород, который был ядом практически для любой другой формы жизни в то время. В течение примерно 300 миллионов лет все эти кислородные отходы образовали атмосферу, какой мы ее знаем, в течение архейских и протерозойских эр.

Иногда, в течение протерозоя или в начале кембрийского периода, эти бактерии формировали симбиотические отношения с некоторыми клетками эукаритот, давая клеткам пищу в обмен на стабильные условия, которые можно было назвать домом. Это были первые растения. Невероятное событие эндосимбиоза до сих пор считается одним из важнейших в становлении первой жизни.

Первыми организмами, появившимися на Земле несколько миллиардов лет назад и создавшими предпосылки для дальнейшего развития жизни, были бактерии. Сейчас они составляют отдельное царство живых организмов. Вирусы — самые мелкие из известных живых существ. Но если бактерии, без всякого сомнения, считаются самостоятельными живыми организмами, то вирусы, не имеющие собственного обмена веществ, заимствуют свою жизнь у клеток растений, животных и бактерий. Вирусы являются внутриклеточными паразитами живых организмов.

Бактерии

Это одноклеточные организмы, которые не имеют ядра, окруженного собственной мембраной, то есть являются прокариотами. Они обладают всего лишь одной хромосомой, которая располагается в так называемой ядерной зоне. Клетки бактерий имеют микроскопические размеры (0,0005— 0,005 мм), в них отсутствуют многие органеллы, характерные для эукариот.


Форма бактерий довольно разнообразна, они бывают палочковидными (бациллы), шарообразными (кокки), извитыми (вибрионы), спиралеобразными (спирохеты). Некоторые бактериальные клетки объединяются в колонии, а некоторые из них способны к движению с помощью жгутика.

Бактерии обладают способностью к стремительному размножению. В среднем бактерия делится надвое через каждые 20—30 минут, и уже через 6 часов от одной бактерии может образоваться 250 тыс. дочерних. Миллиарды бактерий присутствуют в воздухе, воде, почве, внутри растительных и животных организмов, бактерии живут даже в горячих источниках. Ветер и вода могут переносить бактерии на большие расстояния. В неблагоприятных условиях внутренняя часть клетки бактерии превращается в спору с толстой оболочкой, устойчивую к высоким температурам, отсутствию кислорода и высушиванию. В таком состоянии споры сохраняются в течение многих лет.


Бактерии играют важнейшую роль в круговороте веществ в природе, в процессах почвообразования, некоторые виды бактерий живут в пищеварительной системе животных и человека, принимая активнейшее участие в процессах пищеварения. Однако среди бактерий немало очень вредных и опасных для человека микроорганизмов, являющихся возбудителями инфекционных заболеваний, среди которых дизентерия, брюшной тиф, холера, чума, сибирская язва.

Вирусы

Вирусы представляют собой неклеточную форму жизни. Они намного мельче бактерий, поэтому их удалось обнаружить лишь в конце XIX в. Вирусы состоят из нуклеиновой кислоты (РНК или ДНК), покрытой оболочкой, у них нет собственного обмена веществ, вне клеток других организмов они безжизненны. Однако, встретившись с восприимчивой к вирусу клеткой, вирус проникает через ее оболочку и подчиняет себе ее обмен веществ, заставляя продуцировать новые вирусные частицы. Очень скоро зараженная клетка погибает, а размножившиеся вирусы разносятся по всему организму, поражая всё новые клетки.


Известно более 400 вирусов, вызывающих заболевания растений, животных и человека, среди которых ветряная оспа, краснуха, бешенство, полиомиелит. Вирусы определенной разновидности поражают определенные организмы и органы. Не все вирусы одинаково опасны, некоторые из них заражают только животных, но безвредны для человека, и наоборот. Как все организмы, вирусы могут претерпевать мутации, в результате которых образуются новые формы, устойчивые к реакциям организма. Ярким примером является вирус гриппа: известно несколько десятков его разновидностей, появляющихся каждый год и вызывающих эпидемии.

Клетки иммунной системы человека вырабатывают антитела против вирусов и интерферон — белок, подавляющий их размножение. Некоторые вирусные заболевания можно предотвратить с помощью вакцинации: в здоровый организм вводится вакцина (препарат, содержащий небольшую дозу вирусов, безопасную для организма) и иммунная система начинает вырабатывать антитела. Оставаясь в крови, антитела препятствуют повторному заболеванию. Однако в мире распространены и такие вирусы, против которых до сих пор не найдены эффективные лекарства. Среди них — ВИЧ (вирус иммунодефицита человека), вирусы атипичной пневмонии, птичьего гриппа и т. д.



Недалёкое будущее. Высшее руководство одной из крупнейших стран мира собралось на экстренное совещание. Высокопоставленные чиновники заметно встревожены: группа террористов захватила на одной из военных баз новейшее оружие – настолько секретное, что даже первые лица страны называют его только кодовым обозначением.

Как выяснилось, эта жидкость содержит опасный вирус, способный за считанные часы уничтожить половину человечества. К бойцам подбегают люди в специальных защитных скафандрах – учёные-вирусологи.

Они забирают опасный груз, тщательно укладывают его в металлические контейнеры и увозят для деактивации в недрах своих зашифрованных лабораторий.

Ещё одна трактовка: вирусы – внутриклеточные паразиты, которые не могут сами ничего синтезировать, и имеют, в зависимости от семейства, различные системы репликации и транскрипции. И это далеко не полный спектр определений, предложенных учёными для вируса.

Почему же для такого крошечного и, казалось бы, такого простого объекта не существует единого универсального определения? Наверное, потому, что вирус до сих пор остается одной из самых больших загадок для исследователей.

Вирусы присутствуют как зависимые паразиты в любой форме земной жизни – в бактериях, археях, простейших, растениях, грибах и животных. Несмотря на то, что они более чем доступны для исследования, учёные до сих пор спорят даже об их роли в эволюции.


Например, существует теория о том, что вирусы участвовали в появлении клеточного ядра и других компонентов эукариотической клетки. А вот эволюционное влияние вирусов на живые организмы на более поздних этапах эволюции уже доказано.

Есть основания предполагать, что интеграция генома ретровирусов в ДНК предка человека вблизи гена PRODH сыграла важную роль в развитии умственных способностей homo sapiens. Кроме того, вирусы являются важным природным средством обмена генетической информации между разными видами, что приводит к появлению генетическое разнообразие и направляет эволюцию.

Они играют определяющую роль в регуляции численности популяций некоторых видов живых организмов. В некоторых случаях вирусы образуют со своими хозяевами симбиоз. Вирусы имеют генетические связи с представителями флоры и фауны Земли.

Согласно последним исследованиям, геном человека более чем на 32% состоит из вирусоподобных элементов и транспозонов. Так, в геноме высших приматов существует ген, кодирующий белок синцитин, который считают, был привнесен ретровирусом.

На данный момент вирусы являются одним из крупнейших живых хранилищ неисследованного генетического разнообразия на Земле.

Таким образом, вирусы были и остаются важнейшей составляющей земной жизни на всех этапах эволюции. Однако, человечество начало изучать этот удивительный инфекционный агент совсем недавно. Более того – о самом факте его существования учёные узнали чуть больше века назад, хотя представления о заразности таких болезней, как оспа, корь и многих других, зародились еще у древних народов. Конечно, эти отрывочные наблюдения и догадки были очень далеки от настоящих научных знаний, и к концу XVIII века понимание природы инфекций было относительно примитивным.


Дмитрий Иосифович Ивановский
(1864-1920)

Настоящая революция в изучении вирусов произошла в 1892 г., когда выдающийся естествоиспытатель Дмитрий Иосифович Ивановский отправился в командировку на юг Украины для изучения мозаичной болезни табака. Исследуя эту болезнь, которая наносила огромный ущерб табачным плантациям, молодой учёный обнаружил, что возбудитель этой болезни проходит сквозь бактериальные фильтры.

После Ивановского и Бейеринка открытия совершались одно за другим. В 1898 г. Леффлер и Фрош открыли первый вирус животных – вирус ящура, а Род и Кэрролл в 1901-1902 гг. – первый вирус человека (вирус жёлтой лихорадки).

В том же 1902 г. были открыты вирусы чумы крупного рогатого скота, оспы коз, оспы овец; в 1905 г. – вирусы чумы собак, оспы коров; в 1907 г. – вирус натуральной оспы, вирус денге; в 1908 г. – вирусы полиомиелита, лейкоза кур и др.

И хотя царство вирусов было открыто ещё в конце XIX в., их глубокое изучение стало возможным лишь во второй половине XX века после изобретения электронного микроскопа и адекватных моделей для культивирования.


Мартин Бейеринк (1851—1931)

В настоящее время вирусологию определяют как медико-биологическую науку, изучающую вирусы и субвирусные агенты (вироиды, сателлиты и прионы): их строение, генетику, систематику, эволюцию, их способы заражать и эксплуатировать клетку-хозяина для размножения, их взаимодействие с иммунитетом организма-хозяина, болезни, которые они вызывают, методы их выделения и культивирования, а также использование вирусов в научных исследованиях и терапии.

Вирусы могут быть классифицированы в соответствии с теми хозяевами, которых они поражают: вирусы животных, вирусы растений, вирусы бактерий и др.

Наиболее распространённой является классификация вирусов в соответствии с типом их генетического материала и способа размножения (репликации) в клетке-хозяине. Классификация вирусов обновляется каждые пять лет по решению Международного комитета по таксономии вирусов (МКТВ).

Этот комитет предлагает классифицировать все известные вирусы по четырём иерархическими уровнями: вид, род, семья (иногда подсемейство) и порядок. Сейчас реестр классифицированных вирусов и вироидов включает 3704 вида, входящих в состав 609 родов, 27 подсемейств, 111 семей и 7 порядков.

Основной причиной изучения вирусов является их реальная угроза для человечества. Вирусы являются причиной острых массовых инфекций, на их долю приходится 90% всех инфекционных заболеваний.

Только от острых кишечных и респираторных вирусных инфекций в мире погибает 10-14 млн. человек. Кроме того, вирусы могут быть причиной развития злокачественных заболеваний и вызвать обострение хронических болезней.

Сегодня известно более 2 тысяч различных болезней человека, спектр которых постоянно пополняется за счёт ранее неизвестных: вирусные лихорадки Ласса, Эбола, Марбург, Зика, ВИЧ-инфекция, ряд вирусных кишечных болезней, вирусные гепатиты C, D, E и G, хантавирусная легочный синдром, ТОРС-коронавирус, болезни нервной системы, вызванные прионами.

Одновременно расширение спектра вирусных болезней происходит за счёт установления природы заболеваний, которые ранее считались неинфекционными (хронические гепатиты, лимфома Беркитта, саркома Капоши, Т-клеточные лейкозы и другие опухоли). Некоторые вирусные варианты онкопатологий так же отнесли к инфекционным болезням.

Давно обсуждается вопрос об инфекционной природе некоторых психических расстройств. Сегодня доказано, что в структуре причин самоубийств определённое место занимает инфекционный фактор – вирус Борна.

Также определена вирусная природа многих аутоиммунных (рассеянный склероз, сахарный диабет I типа) и аллергических (сенная лихорадка) болезней человека и животных.

Не менее 300 известных вирусов способны вызывать пандемии (грипп А, оспа, ВИЧ-инфекция, полиомиелит), эпидемии (лихорадка денге, жёлтая лихорадка, Западного Нила, Эбола, Зика), эпидемические вспышки (гепатит Е, вирус Нипа и др.) и спорадические заболевания.

Вирусы имеют большое значение для исследований в молекулярной и клеточной биологии. Поскольку они являются простыми системами, их используют для управления и изучения функционирования клеток.

Например, вирусы применяются в генетических исследованиях. Именно благодаря изучению вирусов были описаны ключевые механизмы молекулярной генетики, такие как: репликация ДНК, транскрипция, процессинг РНК, трансляция, транспорт белков, функционирования рибозимов.

Вирусы могут быть использованы как векторы для введения нужных генов в исследуемые клетки. Это дает возможность заставить клетку производить необходимые чужеродные вещества и изучать последствия введения нового гена в геном. Весьма вероятно, что вирусы найдут широкое применение в генотерапии.

Кроме того, вирусы используют с диагностической целью, для лечения бактериальных болезней, для борьбы с насекомыми-вредителями, и даже для регуляции численности популяции нежелательных животных (например – ограничение численности кроликов в Австралии).

Многие вирусы могут быть получены de novo, то есть с нуля. Первый искусственный вирус был получен в 2002 году.

Сегодня в свободном доступе в специализированных онлайновых базах данных опубликованы полные геномные последовательности 2408 различных вирусов (в том числе вируса натуральной оспы).

Вирусы являются самой распространенной формой существования органической материи на планете, оказывающей огромное влияние на другие формы жизни. Включая так называемых Homo sapiens, т.е. нас с вами. Их изучение и использование в интересах человечества – одна из важнейших задач для учёных.

В Украине развитие вирусологической науки исторически связано с Киевским национальным университетом. Так сложилось, что вот уже более 100 лет, наше учебное заведение занимает лидирующие позиции в этой области науки.

В 1962 г. в Киевском государственном университете имени Т. Г. Шевченко была открыта первая во всем СССР кафедра вирусологии, которая начала подготовку специалистов-вирусологов.

Организатором и первым заведующим кафедрой вирусологии была известный вирусолог и эпидемиолог, профессор, доктор медицинских наук Нина Петровна Корнюшенко. С декабря 2003 кафедру возглавляет профессор, доктор биологических наук, академик Высшей школы Украины, лауреат премии Украины в области науки и техники, премии НАНУ имени Д.К. Заболотного – Валерий Петрович Полищук.

Студенты, специализирующиеся на кафедре, получают основательную теоретическую и практическую подготовку по целому ряду научных направлений современной вирусологической науки, включая фитовирусологию, бактериофагию, медицинскую и ветеринарную вирусологию.

  • 16278
  • 12,7
  • 2
  • 4

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма


Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).


Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].


Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).


Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.


Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.


Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.


Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.


Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.