А вирусы распространены повсеместно

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Неклеточные формы жизни: вирусы

Вирус (лат. virus — яд) — неклеточные структуры с упорядоченной организацией, содержащие генетический материал (ДНК или РНК), упакованный в белковую оболочку, или капсид. Вирусы являются внутриклеточными паразитами на генетическом уровне. Они способны проникать в клетки живых организмов и в них размножаться. Для построения своих новых частиц они используют химические вещества и энергию клетки-хозяина. Форма вируса (палочковидная, сферическая, нитевидная) зависит от характера взаимодействия нуклеиновой кислоты с белковой оболочкой.

Вирусы в природе распространены повсеместно. Они паразитируют на всех группах организмов. С вирусной инфекцией связаны многие заболевания человека, в том числе крайне опасные (вирусный гепатит, СПИД, полимиелит, грипп и другие).

Вирусы существуют в двух формах: покоящейся (внеклеточной) и репродуцирующейся (внутриклеточной).

Вирусы условно делятся на простые и сложные.

  • Простые. В составе таких вирусов только нуклеиновые кислоты (РНК и ДНК) и белок.
  • Сложные. Нуклеотид этих вирусов состоит из белка и только РНК, также они могут содержать липопротеидную мембрану, углеводы и ферменты. К группе сложных вирусов относят так называемые ретровирусы . У них обнаружен такой фермент, как обратная транскриптаза.

Особенности вирусов


1. Тело вируса не имеет клеточного строения.

2. Вирусы могут существовать только как внутриклеточные паразиты и не могут размножаться вне клеток организма хозяина.

3. В вирусах содержится один тип нуклеиновых кислот — либо РНК, либо ДНК (все клеточные организмы содержат и ДНК, и РНК одновременно). Отсутствуют рибосомы.

Генетический аппарат вирусов представлен различными формами нуклеиновых кислот, такого разнообразия нет ни у одной из других форм жизни. У всех живых организмов, кроме вирусов, генетический аппарат состоит из двунитевой молекулы дезоксирибонуклеиновой кислоты (ДНК), а рибонуклеиновая кислота (РНК), выполняющая в клетках роль переносчика информации, всегда однонитевая.

У вирусов же существуют все возможные варианты устройства генетического аппарата: одно- и двунитевая РНК, одно- и двунитевая ДНК.

При этом и вирусная РНК, и вирусная ДНК могут быть либо линейными, либо замкнутыми в кольцо.

4. Отсутствует обмен веществ. Вирусом используется энергия, получаемая за счет обмена веществ в клетках хозяина. Имеют очень ограниченное число собственных ферментов, используют обмен веществ хозяина, его ферменты, энергию, полученную при обмене веществ в клетках хозяина.

Вирусы состоят из нуклеиновой кислоты, окруженной белками одного или нескольких типов; некоторые вирусы имеют также липидсодержащую внешнюю оболочку.

Белки вирусов выполняют тот же ряд важнейших функций, что и в клетке, в том числе структурную, транспортную, ферментативную, защитную.

Одной из основных особенностей строения вирусов является белковая оболочка (капсула), в которую заключен генетический материал вируса. При этом вирусы не имеют собственных белоксинтезирующих систем, а используют для этого системы клетки хозяина.

Вирусный белок выполняет защитную роль и весьма важную функцию — он отвечает за прикрепление вируса к поверхности клеток, после чего вирус проникает внутрь клетки и начинает размножаться в ней. Поэтому фрагмент белка, связывающийся с клеточной мембраной, остается неизменным.

Гемагглютинин — поверхностный белок вируса гриппа, обеспечивающий способность вируса присоединяться к клетке-хозяину.

Нейраминидаза — поверхностный белок вируса гриппа, отвечающий, во-первых, за способность вирусной частицы проникать в клетку, и, во-вторых, за способность вирусных частиц выходить из клетки после размножения.

Нуклеокапсид — генетический материал (РНК) вируса заключенный в белковую оболочку (капсулу).

Как результат присутствия в молекулах нескольких функциональных групп белки обладают высокой реактивной способностью и амфотерными свойствами.


Капсид (уклеокапсид)— это внешняя оболочка вируса, состоящая из белков.

  1. Защита генетического материала (ДНК или РНК) вируса от механических и химических повреждений.
  2. Определение потенциала к заражению клетки.
  3. Прикрепление к клеточной мембране, разрыв мембраны и внедрение в клетку генетического материала вируса.

Капсиды большинства вирусов имеют спиральную или икосаэдрическую симметрию. В случае спиральной симметрии (например, у вируса табачной мозаики) составные части капсида формируют цилиндр из уложенных по спирали белковых глобул, внутри которого находится генетический материал вируса. В случае икосаэдрической симметрии (например, у многих бактериофагов) образуется квази-сферическая структура капсида.

Структурный анализ основных типов капсидов используется в классификации вирусов.


Дополнительная липопротеидная оболочка образована из плазматической мембраны клетки-хозяина и встречается только у сравнительно больших вирусов (грипп, герпес).

Схематичное строение вируса: 1 — сердцевина (однонитчатая РНК); 2 — белковая оболочка (капсид); 3 — дополнительная липопротеидная оболочка; 4 — капсомеры (структурные части капсида)

В отличие от других организмов вирусы не имеют рибосом и ферментов, катализирующих образование макроэргических фосфатов, метаболизм белков, углеводов и жиров.

Вирусы размножаются только внутри зараженных клеток и поэтому относятся к облигатным внутриклеточным паразитам.

Вирусные гены обычно кодируют белки, необходимые для репликации нуклеиновой кислоты и сборки вирусов.

Вироиды — субвирусные инфекционные агенты, возбудители некоторых заболеваний (в первую очередь у растений). Представляют собой высокоструктурированные кольцевые фрагменты РНК, реплицируемые клеточной РНК-полимеразой. Белков вироиды не кодируют. Вироиды были открыты и названы в 1971 году Теодором О. Динером.

Вирусоиды похожи на вироиды, но включены в структуру вируса — помощника и реплицируются только с его помощью.

Человек может заразиться прионами, содержащимися в пище, так как они не разрушаются ферментами пищеварительного тракта. Беспрепятственно проникая через стенку тонкого кишечника, они в конечном итоге попадают в центральную нервную систему. Так переносится новый вариант болезни Крейтцфельдта — Якоба, которой люди заражаются после употребления в пищу говядины, содержащей нервную ткань из голов скота, больных бычьей губчатой энцефалопатией (BSE, коровье бешенство).

Мозговое вещество, изъеденное прионом коровьего бешенства. Дырки и обширные пустые участки располагаются на месте бывших нервных клеток

Прионы могут проникать в тело и парентеральным (через внедрение патогенных микроорганизмов в организм человека или животного минуя пищевой тракт (через кровяное русло, кожу, конъюнктиву глаза, подкожно, внутримышечно, внутрибрюшинно) путем. Были описаны случаи заражения при внутримышечном введении препаратов, изготовленных из человеческих гипофизов (главным образом гормоны роста для лечения карликовости), а также заражение мозга инструментами при нейрохирургических операциях, поскольку прионы устойчивы к применяемым в настоящее время термическим и химическим методам стерилизации.


Ретровирусы — это вирусы с необычным способом репликации генетического материала. Для цикла репродукции этого большого семейства вирусов характерен обратный поток генетической информации: вместо обычной транскрипции (т. е. переписывания) дезоксирибонуклеиновой кислоты (ДНК) в рибонуклеиновую кислоту (РНК), как это происходит в клетке при реализации генетической информации, их геномная РНК переписывается в ДНК (обратная транскрипция).

Ретровирусы (лат. retro — обратно, назад и virus — яд) — РНК — содержащие вирусы, цикл размножения которой проходит через стадию двухцепочечной ДНК. В каждой вирусной частице имеются две копии вируса. В составе генома помимо генов, кодирующих структуру белков капсида, имеется ген, кодирующий фермент обратную транскриптазу, который осуществляет синтез ДНК на РНК. Обратная транскриптаза вместе с РНК упаковывается в вирусную частицу.

В цитоплазме клетки-хозяина фермент превращает одноцепочечную РНК в двухцепочечную ДНК, которая встраивается в геном хозяина. Провирусная ДНК транскрибируется как матрица для синтеза вирусных белков и в качестве генома при упаковке вирусных частиц.

Члены семейства ретровирусов вызывают ряд тяжелых заболеваний животных и человека. К наиболее изученным вирусам относятся вирусы лейкемии птиц, мышей, кошек и приматов, а также вирусы иммунодефицита кошек, обезьян и человека. Вирус иммунодефицита человека (ВИЧ) вызвал пандемию ВИЧ-инфекции и СПИДа (синдрома приобретенного иммунодефицита) во всем мире.

Первый Lentivirinae ( lente — медленно) — ленивый ретровирус был открыт в 1904 году, когда французы А. Балле и А. Карре обнаружили фильтрующийся агент — вирус инфекционной анемии лошадей. Затем были открыты другие лентивирусные инфекции сельскохозяйственных животных. Типичными лентивирусами являются давно изученые вирус висны у овец, кошачий вирус иммунодефицита, вирус артрита у коз. Кроме сходства по своему строению эти вирусы вызывают однотипные патологии. Например, заражение овец вирусом висны приводит к длительному хроническому заболеванию, которое тянется порой до 2 и более лет. Но затем, также как и при инфицировании ВИЧ, неизбежно наступает летальный исход.

ВИЧ-1 и ВИЧ-2 — единственные патогенные для человека представители подсемейства Lentivirinae. Говоря о медленном течении лентивирусных инфекций, их обычно сравнивают с острыми вирусными инфекциями (например, с гриппом), но не с инфекциями, вызываемыми другими ретровирусами. В то же время клиническая картина острой лихорадочной фазы ВИЧ-инфекции напоминает проявления многих классических острых инфекций.

  • 16324
  • 12,8
  • 2
  • 5

Обратите внимание!

Спонсоры конкурса: Лаборатория биотехнологических исследований 3D Bioprinting Solutions и Студия научной графики, анимации и моделирования Visual Science.

Эволюция и происхождение вирусов

В 2007 году сотрудники биологического факультета МГУ Л. Нефедова и А. Ким описали, как мог появиться один из видов вирусов — ретровирусы. Они провели сравнительный анализ геномов дрозофилы D. melanogaster и ее эндосимбионта (микроорганизма, живущего внутри дрозофилы) — бактерии Wolbachia pipientis. Полученные данные показали, что эндогенные ретровирусы группы gypsy могли произойти от мобильных элементов генома — ретротранспозонов. Причиной этому стало появление у ретротранспозонов одного нового гена — env, — который и превратил их в вирусы. Этот ген позволяет вирусам передаваться горизонтально, от клетки к клетке и от носителя к носителю, чего ретротранспозоны делать не могли. Именно так, как показал анализ, ретровирус gypsy передался из генома дрозофилы ее симбионту — вольбахии [7]. Это открытие упомянуто здесь не случайно. Оно нам понадобится для того, чтобы понять, чем вызваны трудности борьбы с вирусами.

Из давних письменных источников, оставленных историком Фукидидом и знахарем Галеном, нам известно о первых вирусных эпидемиях, возникших в Древней Греции в 430 году до н.э. и в Риме в 166 году. Часть вирусологов предполагает, что в Риме могла произойти первая зафиксированная в источниках эпидемия оспы. Тогда от неизвестного смертоносного вируса по всей Римской империи погибло несколько миллионов человек [8]. И с того времени европейский континент уже регулярно подвергался опустошающим нашествиям всевозможных эпидемий — в первую очередь, чумы, холеры и натуральной оспы. Эпидемии внезапно приходили одна за другой вместе с перемещавшимися на дальние расстояния людьми и опустошали целые города. И так же внезапно прекращались, ничем не проявляя себя сотни лет.

Вирус натуральной оспы стал первым инфекционным носителем, который представлял действительную угрозу для человечества и от которого погибало большое количество людей. Свирепствовавшая в средние века оспа буквально выкашивала целые города, оставляя после себя огромные кладбища погибших. В 2007 году в журнале Национальной академии наук США (PNAS) вышла работа группы американских ученых — И. Дэймона и его коллег, — которым на основе геномного анализа удалось установить предположительное время возникновения вируса натуральной оспы: более 16 тысяч лет назад. Интересно, что в этой же статье ученые недоумевают по поводу своего открытия: как так случилось, что, несмотря на древний возраст вируса, эпидемии оспы не упоминаются в Библии, а также в книгах древних римлян и греков [9]?

Строение вирусов и иммунный ответ организма


Рисунок 1. Первооткрыватель вирусов Д.И. Ивановский (1864–1920) (слева) и английский врач Эдвард Дженнер (справа).


Почти все известные науке вирусы имеют свою специфическую мишень в живом организме — определенный рецептор на поверхности клетки, к которому и прикрепляется вирус. Этот вирусный механизм и предопределяет, какие именно клетки пострадают от инфекции. К примеру, вирус полиомиелита может прикрепляться лишь к нейронам и потому поражает именно их, в то время как вирусы гепатита поражают только клетки печени. Некоторые вирусы — например, вирус гриппа А-типа и риновирус — прикрепляются к рецепторам гликофорин А и ICAM-1, которые характерны для нескольких видов клеток. Вирус иммунодефицита избирает в качестве мишеней целый ряд клеток: в первую очередь, клетки иммунной системы (Т-хелперы, макрофаги), а также эозинофилы, тимоциты, дендритные клетки, астроциты и другие, несущие на своей мембране специфический рецептор СD-4 и CXCR4-корецептор [13–15].


Одновременно с этим в организме реализуется еще один, молекулярный, защитный механизм: пораженные вирусом клетки начинают производить специальные белки — интерфероны, — о которых многие слышали в связи с гриппозной инфекцией. Существует три основных вида интерферонов. Синтез интерферона-альфа (ИФ-α) стимулируют лейкоциты. Он участвует в борьбе с вирусами и обладает противоопухолевым действием. Интерферон-бета (ИФ-β) производят клетки соединительной ткани, фибробласты. Он обладает таким же действием, как и ИФ-α, только с уклоном в противоопухолевый эффект. Интерферон-гамма (ИФ-γ) синтезируют Т-клетки (Т-хелперы и (СD8+) Т-лимфоциты), что придает ему свойства иммуномодулятора, усиливающего или ослабляющего иммунитет. Как именно интерфероны борются с вирусами? Они могут, в частности, блокировать работу чужеродных нуклеиновых кислот, не давая вирусу возможности реплицироваться (размножаться).


Причины поражений в борьбе с ВИЧ

Тем не менее нельзя сказать, что ничего не делается в борьбе с ВИЧ и нет никаких подвижек в этом вопросе. Сегодня уже определены перспективные направления в исследованиях, главные из которых: использование антисмысловых молекул (антисмысловых РНК), РНК-интерференция, аптамерная и химерная технологии [12]. Но пока эти антивирусные методы — дело научных институтов, а не широкой клинической практики*. И потому более миллиона человек, по официальным данным ВОЗ, погибают ежегодно от причин, связанных с ВИЧ и СПИДом.


Рисунок 5. Схема развития феномена ADE при вирусных инфекциях. а — Взаимодействие между антителом и рецептором FcR на поверхности макрофага. б — Фрагмент С3 комплемента (компонент комплемента, после присоединения которого весь этот комплекс приобретает способность прилипать к различным частицам и клеткам) и рецептор комплемента (complement receptor, CR) способствуют присоединению вируса к клетке. в — Белки комплемента С1q и С1qR способствуют присоединению вируса к клетке (в составе молекулы C1q имеется рецептор для связывания с Fc-фрагментом молекулы антитела). г — Антитела взаимодействуют с рецептор-связывающим сайтом вирусного белка и индуцируют его конформационные изменения, облегчающие слияние вируса с мембраной. д — Вирусы, получившие возможность реплицироваться в данной клетке посредством ADE, супрессируют противовирусные ответы со стороны антивирусных генов клетки. Рисунок с сайта supotnitskiy.ru.

Подобный вирусный механизм характерен не только для ВИЧ. Он описан и при инфицировании некоторыми другими опасными вирусами: такими, как вирусы Денге и Эбола. Но при ВИЧ антителозависимое усиление инфекции сопровождается еще несколькими факторами, делая его опасным и почти неуязвимым. Так, в 1991 году американские клеточные биологи из Мэриленда (Дж. Гудсмит с коллегами), изучая иммунный ответ на ВИЧ-вакцину, обнаружили так называемый феномен антигенного импринтинга [23]. Он был описан еще в далеком 1953 году при изучении вируса гриппа. Оказалось, что иммунная система запоминает самый первый вариант вируса ВИЧ и вырабатывает к нему специфические антитела. Когда вирус видоизменяется в результате точечных мутаций, а это происходит часто и быстро, иммунная система почему-то не реагирует на эти изменения, продолжая производить антитела к самому первому варианту вируса. Именно этот феномен, как считает ряд ученых, стоит препятствием перед созданием эффективной вакцины против ВИЧ.


Открытие биологов из МГУ — Нефёдовой и Кима, — о котором упоминалось в самом начале, также говорит в пользу этой, эволюционной, версии.


Сегодня не только ВИЧ представляет опасность для человечества, хотя он, конечно, самый главный наш вирусный враг. Так сложилось, что СМИ уделяют внимание, в основном, молниеносным инфекциям, вроде атипичной пневмонии или МЕRS, которыми быстро заражается сравнительно большое количество людей (и немало гибнет). Из-за этого в тени остаются медленно текущие инфекции, которые сегодня гораздо опаснее и коварнее коронавирусов* и даже вируса Эбола. К примеру, мало кто знает о мировой эпидемии гепатита С, вирус которого был открыт в 1989 году**. А ведь по всему миру сейчас насчитывается 150 млн человек — носителей вируса гепатита С! И, по данным ВОЗ, каждый год от этой инфекции умирает 350-500 тысяч человек [33]. Для сравнения — от лихорадки Эбола в 2014-2015 гг. (на состояние по июнь 2015 г.) погибли 11 184 человека [34].

* — Коронавирусы — РНК-содержащие вирусы, поверхность которых покрыта булавовидными отростками, придающими им форму короны. Коронавирусы поражают альвеолярный эпителий (выстилку легочных альвеол), повышая проницаемость клеток, что приводит к нарушению водно-электролитного баланса и развитию пневмонии.


Рисунок 8. Электронная микрофотография воссозданного вируса H1N1, вызвавшего эпидемию в 1918 г. Рисунок с сайта phil.cdc.gov.

Почему же вдруг сложилась такая ситуация, что буквально каждый год появляются новые, всё более опасные формы вирусов? По мнению ученых, главные причины — это сомкнутость популяции, когда происходит тесный контакт людей при их большом количестве, и снижение иммунитета вследствие загрязнения среды обитания и стрессов. Научный и технический прогресс создал такие возможности и средства передвижения, что носитель опасной инфекции уже через несколько суток может добраться с одного континента на другой, преодолев тысячи километров.

Вирусы существуют в 2 формах: покоящейся, или внеклеточной (вирусные частицы, или вирионы), и репродуцирующейся, или внутриклеточной (комплекс вирус-клетка). Все вирусы условно разделяют на простые и сложные. Простые вирусы состоят из нуклеиновой кислоты и белковой оболочки — капсида; некоторые кристаллизуются; форма палочковидная, нитевидная и сферическая. Сложные вирусы помимо белков капсида и нуклеиновой кислоты могут содержать липопротеидную мембрану, углеводы и неструктурные белки — ферменты. Размер вирионов 15-350 нм (длина некоторых нитевидных вирусов достигает 2000 нм); большинство видимы только в электронный микроскоп. В вирусах присутствует всегда один тип нуклеиновой кислоты (либо ДНК, либо РНК, поэтому все вирусы делят также на ДНК-содержащие и РНК-содержащие), которая является носителем наследственной информации. Белки защищают нуклеиновую кислоту и обусловливают ферментативные и антигенные свойства вирусов. Молекулярная масса вирусных ДНК несколько более 10 6 — около 200х10 6 , вирусных РНК — от 10 6 до 15х10 6 . Формы нуклеиновых кислот многообразны: наряду с двухцепочечными ДНК и одноцепочечным и РНК встречаются одноцепочечные ДНК и двухцепочечные РНК; ДНК могут иметь линейную и кольцевую структуры, РНК, как правило, линейны и у некоторых вирусов могут быть представлены набором фрагментов (каждый фрагмент несёт определённую часть генетической информации, необходимой для репродукции вируса). Все активные процессы вирусов протекают в клетках-хозяевах, причём одни вирусы размножаются в их ядре, другие — в цитоплазме, третьи — и в ядре, и в цитоплазме. Различают 3 основных типа взаимодействия вируса и клетки: продуктивную инфекцию (нуклеиновая кислота вириона индуцирует в заражённой клетке вирусспецифические синтезы, что приводит к образованию нового поколения инфекционных вирусных частиц), абортивную инфекцию (цикл репродукции прерывается на какой-либо промежуточной стадии и потомство не образуется) и вирогению (нуклеиновая кислота вируса встроена в геном клетки-хозяина и не способна к автономной репродукции), частным случаем которой является лизогения).

Проникновение вирусной частицы в клетку начинается с её адсорбции на клеточной поверхности (благодаря взаимодействию клеточных и вирусных рецепторов). Капсид претерпевает изменения, приобретает чувствительность к клеточным протеазам, разрушается, освобождая нуклеиновую кислоту. Нуклеиновая кислота многих вирусов животных высвобождается после проникновения вируса в клетку путём пиноцитоза, у некоторых бактериофагов в клетку проникает свободная нуклеиновая кислота. Фитопатогенные вирусы проникают через повреждения в клеточной стенке, после чего адсорбируются на внутренних клеточных рецепторах и высвобождают нуклеиновую кислоту. Последующие стадии репродукции вируса — синтез вирусспецифических белков с участием информационных РНК (у одних вирусов они входят в состав вирионов, а у других синтезируются в заражённых клетках на матрице вирионной РНК или ДНК) и репликация вирусных нуклеиновых кислот. Сборка вирусных частиц у некоторых простых вирусов происходит в результате спонтанной агрегации макромолекул по типу кристаллизации. Самосборка некоторых вирусов осуществлена в искусственных условиях. Из клеток вирусные частицы выходят одновременно (при разрушении клеток) или постепенно (без разрушения клеток). При продуктивном взаимодействии вируса и клетки могут происходить различные патологические изменения-угнетение синтеза клеточных макромолекул, повреждение клеточных структур и т. д. Известны также защитные реакции клетки (образование интерферона). В природе вирусы могут распространяться с помощью переносчиков или механически.

Пути и механизмы эволюции вирусов окончательно не установлены. О происхождении вирусов существует множество гипотез. Основные из них:

    Вирусы возникли из микроорганизмов в результате их паразитической дегенерации по схеме

бактерии —> риккетсии —> хламидозоа —> вирусы.

  • Вирусы развились из органоидов клеток — митохондрий, хлоропластов, эписом.
  • Вирусы — часть генома нормальных клеток.
  • Поскольку для филогенетической классификации вирусов нет достаточных данных, их группируют на основании химических и морфологических свойств и особенностей репродукции. Вирусы объединяют в роды и семейства, для обозначения которых применяют латинизированные названия с окончаниями virus для рода (например, Enterovirus) и viridae для семейств (например, Poxviridae). Виды вирусов, как правило, имеют тривиальные названия, например, вирус табачной мозаики, вирус полиомиелита, бактериофаг Х-174 и др. (бинарные латинизированные наименования, применяемые для обозначения всех видов живых организмов, для вирусов не привились). Свойства вирусов описываются криптограммой. Вирусы резко отличаются от всех других форм жизни. По строению и организации они представляют собой нуклеопротеидные частицы, по способу репродукции являются внутриклеточными паразитами. Будучи автономными генетические структурами, они обладают рядом атрибутов жизни, в том числе таким важным, как способность к эволюции. Иногда вирусы выделяют в особое царство живой природы — Vira.

    Вирусы — объект молекулярной биологии. Они используются при изучении генетической функций нуклеиновых кислот, расшифровке генетического кода и др., принципов и механизмов работы генетического аппарата. Вирусы широко применяются в работах по генетической инженерии, канцерогенезу.

    Вирус. К этому слову обычно относятся со страхом, и понятно, почему так происходит. Эти микроскопические коллекции биологических химических веществ стали причиной бесчисленных болезней и смертей. Само упоминание о смертельной вирусной пандемии может привести целые районы, города или даже географические зоны в состояние безумной паники.

    Вирусы нельзя увидеть невооруженным глазом, и они существуют почти повсеместно на Земле. Они могут заражать грибы, растения, животных и, конечно, людей. Некоторые даже предполагают, что вирусы могут представлять серьезную угрозу для будущего человечества.

    Однако, не все вирусы плохие. На самом деле, по мере того, как мы узнаем о них больше, мы обнаруживаем, что некоторые вирусы на самом деле весьма полезны. Они помогли нам, хотя вначале мы этого не понимали, а другие представляют интересные и позитивные возможности для нашего будущего.



    Фото: popsci.com

    Бактериофаги - это вирусы, которые инфицируют бактерии. Они встречаются почти везде: в почве, в воде и даже в организме человека (в основном в кишечнике и слизи). Впервые они были обнаружены в 1915 году Фредериком Туортом (Frederick Twort) и с тех пор стали довольно известными в области микробиологии в качестве терапевтического инструмента для контроля над бактериальными инфекциями.

    9. Существует вирус, который наделяет растения чрезвычайной устойчивостью к высокой температуре


    Тропическое просо всегда обладало способностью расти в раскаленной почве. Исследователи обнаружили, что причиной этой уникальной способности является вирус. На этой траве растет грибок эндофит, и вирус, который поражает этот гриб, кажется, является источником удивительной термостойкости.

    8. Вирус везикулярного стоматита


    Вирус везикулярного стоматита (ВВС) является инфекционным заболеванием, которое известно в основном тем, что поражает лошадей, хотя оно также может поражать других животных и даже людей. Обычно заболевание не смертельно и не очень опасно для людей, хотя может вызвать симптомы, похожие на грипп. Вследствие вируса, который передается людям от лошадей, у некоторых людей могут появляться волдыри во рту.



    Фото: Live Science

    Аденовирусы представляют собой группу довольно распространенных вирусов. Они чрезвычайно заразны, обычно вызывают только легкие симптомы и проходят в течение нескольких дней. Некоторые из них довольно известные. Бронхит, пневмония, различные инфекции желудочно-кишечного тракта, простуда, круп, и даже менингит все входят в семейство аденовирусов.

    Но исследователи также выяснили, что один конкретный штамм вируса, типа 52 (HAdV-52), связывает особый вид углеводов, содержащихся в раковых клетках. Это создает некоторые интересные возможности для вирусной терапии рака. Очевидно, что предстоит еще многое изучить. Но в будущем ученые смогут вооружать вирусы генами, чтобы помочь бороться с раком. Они также смогут использовать вирусы для активизации собственной иммунной системы организма для борьбы с самим раком.



    Фото: sciencemag.org

    Для решения проблемы исследователи решили вводить нужные бактерии мышам, но добавление норовируса в смесь может фактически решить ту же проблему. Исследователи также обнаружили, что некоторые штаммы норовируса помогли уменьшить воздействие патогенов, которые обычно вызывают потерю веса, диарею и другие симптомы у мышей. Это делает открытие удивительным, поскольку исследователи открыли новый способ использования вируса. Введение штаммов норовируса людям для лечения других заболеваний будет рассматриваться как весьма спорный вопрос, но многие данные говорят о том, что это действительно может помочь.

    5. Древние ретровирусы


    Формирование плаценты стало большим шагом в эволюционном процессе, поскольку она позволила млекопитающим рожать детенышей. Но когда вы действительно внимательно смотрите на отношения между матерью и плодом, неудивительно, что у них есть много характеристик, которые вы ожидаете увидеть в отношениях между хозяином и паразитом. Работа продолжается. Не удивляйтесь, если когда-нибудь мы обнаружим, что причиной, по которой женщины рожают живых детей, а не откладывают яйца, стал древний вирус, изменивший нашу ДНК.


    Этот вирус не менее удивительный. Гаммагерпесвирусы относятся к подсемейству герпесвирусов, которое включает в себя ряд различных вирусов. Существует много различных типов вирусов герпеса, самым известным примером которого является вирус простого герпеса типа 1 и вирус простого герпеса типа 2, которые вызывают герпес и генитальный герпес.

    Как оказалось, латентная инфекция, вызванная одним типом гаммахерпесвируса (Тип MHV-68) повышает устойчивость к инфекции листериями—бактериями – моноцитогенами, которые обычно вызывают пищевые отравления. Кто бы мог подумать, что герпес поможет бороться с пищевым отравлением.

    3. Коровья оспа



    Фото: CDC

    Эта история начинается с опасного вируса оспы. Никто не уверен, откуда он взялся. Но считается, что еще в третьем веке до нашей эры он поразил египетскую империю. Записи о вирусе находили в Китае, они относились к четвертому веку, и с тех пор он появлялся практически повсюду. Это было смертельное заболевание, которое убивало около 30 процентов инфицированных людей. Даже те, кто выживал, часто оставались с ужасными шрамами в результате перенесенной болезни.

    Но в 1796 году английский врач по имени Эдвард Дженнер (Edward Jenner) сделал открытие. Он заметил, что доярки, не заражаются оспой так часто, как все остальные. Вскоре он понял, что подобный вирус, коровья оспа, часто передавался от коров к дояркам, и, возможно, имел отношение к стойкости доярок перед обычной оспой. Он проверил свою теорию, привив мальчика материалом, взятой из раны животного, болевшего коровьей оспой, а затем заразил его обычной оспой. Хотя эксперимент кажется шокирующим, он оказался успешным. Это привело к практике вакцинации, которая два столетия спустя закончилась искоренением вируса оспы.

    2. Гепатит G


    ВИЧ, вероятно, является одним из самых страшных и печально известных вирусов 21-го века. Тем не менее, другой вирус, вирус гепатита G, привлек внимание ученых тем, какое влияние он оказывает на ВИЧ-положительных людей. Вирус гепатита G является членом семейства флавивирусов. Интересный аспект этого вируса связан с его влиянием на прогрессирование ВИЧ.

    Проще говоря, у людей, которые заражены ВИЧ и гепатитом G одновременно, прогрессирование СПИДа, как правило, происходит медленнее, и есть более высокие шансы на выживание, что удивительно. Кто бы мог подумать, что такой опасный вирус, как ВИЧ, может замедлить развитие другого вируса?

    1. Ген Arc


    Ген Arc имеет важное значение для процесса обучаемости человека. Как ни странно, он участвует в процессе обмена данными, отправляя генетический материал от одного нейрона к другому, причем подобный процесс обычно наблюдается у вирусов. Чтобы разобраться в этом, нужны дополнительные исследования. Но уже сейчас можно предположить, что нашу способность учиться и формировать сознательные мысли мы унаследовали из генетического материала какого-то древнего вируса мозга! Да, Вселенная, безусловно, странное и таинственное место.

    Читайте также:

    Пожалуйста, не занимайтесь самолечением!
    При симпотмах заболевания - обратитесь к врачу.