3 вирусы имеют клетку но не имеют ядра


Эукариоты под микроскопом

Клетки растений разнообразны по строению, работе, отличаются образующими их тканями и выполняемыми функциями. Но при этом общую для всех структуру можно разбить на следующие составляющие:

  • Клеточная оболочка с порами.
  • Цитоплазма (часто подвижная). Эндоплазматическая сеть, расположенная внутри нее, являет собой единое целое с наружной клеточной мембраной и оболочкой ядра.
  • Рибосомы занимаются синтезом белка.
  • Вакуоль, заполненная клеточным соком.
  • Плотное образование – ядро (которое имеет ядрышко). Оно располагается в центре или ближе к клеточной стенке. От цитоплазмы его отделяет ядерная оболочка, состоящая из двух мембран и имеющая поры. Она позволяет производить обмен веществ между цитоплазмой и ядром.
  • Различного вида пластиды: хлоропласты (для участия в фотосинтезе), хромопласты (отвечают за цвет и интенсивность окраски), лейкопласты. Пластиды присущи только клеткам растений, бактерии их не имеют.


Строение клетки эукариот (ядерных организмов)

Все перечисленные органоиды (компоненты цитоплазмы) являются обязательными. Если один из них погибнет или будет поврежден, то клетка растений перестанет функционировать.

Основное отличие ─ отсутствие оформленного ядра

Основное отличие клеток бактерий от клеток эукариотов (растения, животные и грибы) состоит в том, что они не имеют четко оформленного ядра. Вся генетическая информация у бактерий находится в особом белковом комплексе, называемом нуклеоидом. Несмотря на примитивное строение, нуклеоид способен точно и четко передавать генетические данные от одного поколения к другому. ДНК микроорганизмов является высокополимерным соединением, которое состоит из определенного числа нуклеоидов, находящихся между собой в точной последовательности. При нарушениях этой последовательности происходит мутация вида, что приводит либо к образованию новой формы, либо к приобретению или утрате каких-либо свойств.


Каких органоидов нет у микроорганизмов

В отличие от клеток животных, растений и грибов клетки бактерий (прокариотов) не имеют следующих органелл:

  • лизосомы;
  • пластиды;
  • митохондрии;
  • комплекс Гольджи;
  • эндоплазматическая сеть.


Клеточный органоид, который содержит ферменты, способствующие расщеплению белков, полисахаридов и нуклеиновых кислот. Основная их функция заключается в том, что они участвуют во внутриклеточном расщеплении.











Этих органоидов нет у животных, а их наличие у растений обуславливает их окраску. Основное их предназначение – участие в процессах фотосинтеза.

Наличие этих органоидов в клетках растений и животных позволяет обеспечивать необходимой энергией за счет окислительно-восстановительных процессов. Также они способны передавать генетическую информацию.


Функция этих органоидов заключается в накоплении, изменении и последующем выведении веществ из клеток растений и животных.

Является клеточным органоидом, состоящим из системы канальцев и пузырьков. Находится в цитоплазме и ограничена мембраной. Она участвует в метаболических процессах, обеспечивая транспортировку веществ извне в цитоплазму.











У микроорганизмов многие функции этих органоидов выполняет мезосома. Эта структура образуется в результате втягивания внутрь клеточной мембраны. Она участвует в репликации ДНК, в создании клеточных перегородок и в ряде других процессов жизнедеятельности.

Размножение и деление

Отличаются микроорганизмы от растений и способом размножения. У прокариотов это деление одной клетки на две (митоз отсутствует). Причем до того, как дочерние клетки вырастут и тоже приобретут способность размножаться, может пройти очень малый промежуток времени. Это объясняет, почему заболевания, вызванные ростом бактерий, могут иметь весьма бурное течение и развитие. Хорошо, что цикл их жизни достаточно короткий, иначе наличие других форм жизни было бы сомнительно.


В целом клетки растений имеют более сложную структуру по сравнению с бактериальными:

  • Они наделены ядром, мембраной и богатым набором клеточных органоидов.
  • Их ДНК расположена в ядре и отделена от цитоплазмы.
  • Клетки эукариотов не имеют в составе стенки муреин, значит, не способны образовывать защитную капсулу из слизи.
  • Клетки растений и бактерий имеют различия в способах размножения.


Некоторое сходство, впрочем, не исключается. Это и плотное строение клеточной стенки, и наличие рибосом, цитоплазмы, генетической информации. Но на этом и основана клеточная теория, утверждающая, что все живые организмы состоят из клеток – элементарных структурных частиц. А тот факт, что клетки микроорганизмов каких-то органоидов не имеют, повод отнести их к другому царству.











Защитная оболочка

Клеточная стенка у доядерных (прокариот) очень плотная. Снаружи она покрыта слизистой капсулой, которая предохраняет бактерию от высыхания. Как и у растений, стенка клетки микроорганизма проницаема, чтобы пропускать внутрь питательные вещества и выводить продукты обмена. Но у прокариотов она выполняет особую охранную функцию, ведь вся наследственная информация находится внутри цитоплазмы, и никаких других механизмов для ее защиты не предусмотрено. У растений же наследственный аппарат размещен внутри ядра.


Различия в строении и органеллах делают доядерных и ядерных очень разными

Состав клеточной оболочки (стенки) бактерий содержит муреин. У растений она состоит из целлюлозы. А вот цианобактерии по этому пункту сравнения имеют некоторые сходства и в том и в другом случае. Их клеточные стенки содержат и целлюлозу, и муреин (в немного меньших количествах).

В нем бактерия спокойно переждет неблагоприятный период, если вдруг питание или размножение невозможны, или условия для этого не совсем подходящие. Споры позволяют бактериям выдерживать экстремальные температуры, не дают высохнуть и погружают в анабиоз до сотни лет.

21 февраля 2017

  • 745
  • 0,6
  • 0
  • 1

Правило черной королевы довлеет над всеми живыми организмами биосферы. Особенную актуальность оно имеет для паразитов. Чтобы успеть за эволюцией защиты хозяина им буквально приходится бежать со всех ног, изобретая все новые и новые методы взлома. Не остались в стороне и бактериофаги. Результаты только что опубликованного исследования группы ученых из университета Калифорнии ошеломляют: чтобы скрыть свою ДНК от защитных систем бактерии, фаги научились собирать внутри клетки хозяина полные аналоги эукариотических ядер!

Бактериофаги — обширная и довольно специфическая группа бактериальных вирусов (рис. 1). Большинство бактериофагов относится к ДНК-содержащим вирусам. Именно это обстоятельство объясняет наличие у бактерий целого арсенала ферментных систем, разрезающих специфические последовательности ДНК, характерные для фагов. Это и ферменты рестрикции, открытие которых произвело настоящую революцию в молекулярной биологии во второй половине 70-х, и система CRISPR-Cas , совершающая очередной переворот прямо на наших глазах. Но эволюцию тяжело поставить в тупик, и, по-видимому, то самое псевдоядро, о котором пойдет речь в этом тексте, стало одним из ответов фагов на CRISPR-Cas и рестриктазы.


Рисунок 1. Фаги атакуют бактериальную клетку.

При прохождении литического цикла [3] фагом 201φ2-1 в клетках почвенной бактерии Pseudomonas chlororaphis фаговый тубулин PhuZ формирует биполярное веретено, фиксирующее область репликации фаговой ДНК в геометрическом центре клетки [4]. Весь этот процесс удивительно напоминает деление клеток эукариот. Для определения белков, участвующих в этих событиях, исследователями были созданы химерные конструкции белков фага с зеленым белком GFP и красным mCherry. Флуоресцентная микроскопия и криоэлектронная томография инфицированных клеток показали, что химерный белок GFP-gp105 образует сферическую структуру в центре клетки (gp105 — это первый и наиболее сильно экспрессируемый фаговый белок сразу после инфекции). Микросъемка клеток, экспрессирующих mCherry-PhuZ, продемонстрировала, что на первых минутах инфекции белок GFP-gp105 образует фокус на полюсе клетки, после чего mCherry-PhuZ сразу с двух сторон начинает формировать биполярное веретено (рис. 2). Веретено выталкивает растущий фокус GFP-gp105 в центр клетки, одновременно он растет и превращается в сферическую оболочку (у мутанта PhuZ D190A , не способного к экспрессии PhuZ и, следовательно, образованию филаментов, оболочка так и остается на полюсе). К 41-й минуте инфекции, формирование оболочки заканчивается и внутри нее начинается репликация фаговой ДНК. Достигая центра клетки, веретено начинает вращать оболочку-псевдоядро за счет роста микротрубочек.


Рисунок 2. Флуоресцентная микрофотография инфицированных фагом 201φ2-1 клеток Pseudomonas chlororaphis. ДНК окрашена красителем DAPI (синяя) и находится в оболочке из химерного белка GFP-gp105 (зеленая). Это пседоядро подпирается с двух сторон веретеном из mCherry-PhuZ (красное). При наличии мутации PhuZ D190A правильной сборки веретена не происходит, а псевдоядро остается на периферии клетки.

Описанная оболочка по своей функциональности очень похожа на ядро эукариот . Внутри нее концентрируются белки, участвующие в репликации фага: фаговая ДНК-геликаза (gp197), ДНК-лигаза (gp333), РНКаза Н (gp240), RecA (gp237) и два гомолога β’ субъединицы РНК-полимеразы (gp107 and gp130). В то же время бактериальные рибосомы и факторы трансляции, так же как и некоторые метаболические белки фага (тимидилат-киназа и тимидилат-синтаза), не проникали внутрь псевдоядра.

Псевдоядро из GFP-gp105 также играет важную роль в сборке вирионов фага. Микросъемка показала, что капсид фага из белка gp200 (главного белка оболочки) и gp246 (внутреннего белка оболочки) собирается вблизи одного из полюсов клетки, после чего мигрирует к псевдоядру, связывается с оболочкой и какое-то время вращается вместе с ним как одно целое. Скорее всего, в это время в него каким-то образом экспортируется ДНК из псевдоядра. Через некоторое время капсиды теряют связь с псевдоядром и, начиная с 60-й минуты инфекции, их содержимое начинает краситься ДНК-связывающим красителем DAPI.

Трехмерная реконструкция результатов криоэлектронной микроскопии показала, что сферическое псевдоядро имеет нерегулярное строение и толщину стенки около 5 нм (рис. 3). Белки не способны самопроизвольно проходить через ее границы, но механизмы их импорта остаются нераскрытыми.


Рисунок 3. Результаты криоэлектронной томографии клеток Pseudomonas chlororaphis, инфицированных фагом 201φ2-1. Приведено отдельное изображение (а) и объемная реконструкция (б). Центральный компартмент — псевдоядро — выделен синим, собираемые капсиды вирусных частиц — зеленые многогранники. Желтые точки — рибосомы.

По-видимому, описанная в статье оболочка-псевдоядро служит для защиты ДНК фага от атаки антивирусных систем клетки-хозяина (рестриктаз и CRISPR-Cas9). Остается непонятным, каким образом мРНК экспортируется наружу изучаемого компартмента, а также как организован транспорт белков через его оболочку. Не выяснено, каким образом капсиды загружаются синтезированной в компартменте ДНК.

Возникновение этой системы вызывает огромное количество захватывающих дух вопросов. Распространена ли она среди других фагов? Как и когда она появилась? И главное — возможно ли, что фаговое псевдоядро и тубулиновое веретено имеют общую эволюционную историю с ядерным аппаратом эукариотической клетки? Ответ на этот вопрос в недалеком будущем вполне способен поменять наши представления о роли вирусов в становлении эукариот.

Все живое разделено на 2 империи — клеточные и неклеточные формы жизни. Основными формами жизни на Земле являются организмы клеточного строения. Этот тип организации присущ всем видам живых существ, за исключением вирусов, которые рассматриваются как неклеточные формы жизни.



Неклеточные формы

К неклеточным организмам относятся вирусы и бактериофаги. Остальные живые существа являются клеточными формами жизни.

Неклеточные формы жизни являются переходной группой между неживой и живой природой. Их жизнедеятельность зависит от эукариотических организмов, они могут делиться только проникнув в живую клетку. Вне клетки неклеточные формы не проявляют признаков жизни.

В отличие от клеточных форм, неклеточные виды имеют только один вид нуклеиновых кислот — РНК или ДНК. Они не способны к самостоятельному синтезу белков из-за отсутствия рибосом. Также в неклеточных организмах отсутствует рост и не происходят обменные процессы.

Вирусы настолько малы, что лишь в несколько раз превышают размеры крупных молекул белков. Величина частиц разных вирусов находится в пределах 10-275нм. Они видны только под электронным микроскопом и проходят через поры специальных фильтров, задерживающих все бактерии и клетки многоклеточных организмов.

Впервые их открыл в 1892 г. русский физиолог растений и микробиолог Д. И. Ивановский при изучении болезни табака.

Вирусы являются возбудителями многих болезней растений и животных. Вирусными болезнями человека являются корь, грипп, гепатит (болезнь Боткина), полиомиелит (детский паралич), бешенство, желтая лихорадка и др.

Под электронным микроскопом разные виды вирусов имеют вид палочек и шариков. Отдельная вирусная частица состоит из молекулы нуклеиновой кислоты (ДНК или РНК), свернутой в клубок, и молекул белка, которые располагаются вокруг нее в виде своеобразной оболочки.

Вирусы не могут самостоятельно синтезировать нуклеиновые кислоты и белки, из которых они состоят.


Процесс размножения вирусов

Размножение вирусов возможно только при использовании ферментативных систем клеток. Проникнув в клетку хозяина, вирусы изменяют и перестраивают ее обмен веществ, в результате чего сама клетка начинает синтезировать молекулы новых вирусных частиц. Вне клетки вирусы могут переходить в кристаллическое состояние, что способствует их сохранению.

Вирусы специфичны — определенный вид вируса поражает не только конкретный вид животного или растения, но и определенные клетки своего хозяина. Так, вирус полиомиелита поражает только нервные клетки человека, а вирус табачной мозаики — только клетки листьев табака.

Бактериофаги (или фаги) являются своеобразными вирусами бактерий. Они были открыты в 1917 г. французским ученым Ф. д’Эрелем. Под электронным микроскопом они имеют форму запятой или теннисной ракетки размером около 5нм. Когда частица фага прикрепляется своим тонким отростком к бактериальной клетке, ДНК фага проникает в клетку и вызывает синтез новых молекул ДНК и белка бактериофага. Через 30-60мин бактериальная клетка разрушается и из нее выходят сотни новых частиц фага, готовых к заражению других бактериальных клеток.

Раньше считали, что бактериофаги могут быть использованы для борьбы с болезнетворными бактериями. Однако оказалось, что фаги, быстро разрушающие бактерии в пробирке, неэффективны в живом организме. Поэтому в настоящее время они применяются в основном для диагностики болезней.

Клеточные формы

Клеточные организмы делятся на два надцарства: прокариоты и эукариоты. Структурной единицей клеточных форм жизни является клетка.

Прокариоты имеют простейшее строение: отсутствует ядро и мембранные органоиды, деление идет путем амитоза, без участия веретена деления. К прокариотам относятся бактерии и цианобактерии.

Эукариоты — это клеточные формы, имеющие оформленное ядро, которое состоит из двойной ядерной мембраны, ядерного матрикса, хроматина, ядрышек. Также в клетке находятся мембранные (митохондрии, пластинчатый комплекс, вакуоли, эндоплазматический ретикулум) и немембранные (рибосомы, клеточный центр) органеллы. ДНК у представителей клеточных форм находится в ядре клетки, в составе хромосом, а также в клеточных органоидах, таких как митохондрии и пластиды. Эукариоты объединяют растительный, животный мир и Царство грибов.

Сходство между клеточными и не клеточными видами заключается в наличии специфического генома, способности эволюционировать и давать потомство.

Клеточная теория

Открытие и изучение клетки стало возможным благодаря изобретению микроскопа и усовершенствованию методов микроскопических исследований. Первое описание клетки было сделано в 1665 г. англичанином Р. Гуком. Позже стало ясно, что он открыл не клетки (в современном понимании этого термина), а только наружные оболочки растительных клеток.

Прогресс в изучении клетки связан с развитием микроскопирования в XIX в. К этому времени изменились представления о строении клеток: главным в организации клетки стала считаться не клеточная стенка, а собственно ее содержимое, протоплазма. В протоплазме был открыт постоянный компонент клетки — ядро. Накопленные многочисленные наблюдения о тончайшем строении и развитии тканей и клеток позволили подойти к обобщениям, которые были сделаны впервые в 1839 г. немецким биологом Т. Шванном в виде сформулированной им клеточной теории. Он показал, что клетки растений и животных принципиально сходны между собой. Дальнейшее развитие и обобщение эти представления получили в работах немецкого патолога Р. Вирхова.


Клеточная теория

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория оказала значительное влияние на развитие эмбриологии, гистологии и физиологии. Она дала основу для материалистического понимания жизни, для объяснения эволюционной взаимосвязи организмов, для понимания индивидуального развития.

Основные положения клеточной теории сохранили свое значение на сегодняшний день, хотя более чем за 100 лет были получены новые сведения о структуре, жизнедеятельности и развитии клеток.

В настоящее время клеточная теория постулирует:

  • Клетка — элементарная единица живого;
  • клетки разных организмов гомологичны по своему строению;
  • размножение клеток происходит путем деления исходной клетки;
  • многоклеточные организмы представляют собой сложные ансамбли клеток, объединенные в целостные, интегрированные системы тканей и органов, подчиненных и связанных между собой межклеточными, гуморальными и нервными формами регуляции.

1.Бак­те­рии в от­ли­чие от рас­те­ний имеют

а) спе­ци­а­ли­зи­ро­ван­ные по­ло­вые клет­ки в) одну коль­це­вую мо­ле­ку­лу ДНК в клет­ке

б) ядро, обособ­лен­ное от ци­то­плаз­мы ядер­ной обо­лоч­кой г) две и более хро­мо­сом

2. Бактерии, питающиеся органическими веществами отмерших организмов

а) паразиты б) сапротрофы в) хемотрофы г) симбионты

3.Общим свойством всех клеток бактерий, растений, грибов и животных является способность к

а) обмену веществ б) рост в) движению г) сократимости

4.Ци­анобак­те­рии, в от­ли­чие от бак­те­рий са­про­тро­фов, осу­ществ­ля­ют

а) гни­е­ние б) бро­же­ние в) фо­то­син­тез г) ды­ха­ние

5.По­че­му бак­те­рии вы­де­ля­ют в са­мо­сто­я­тель­ное цар­ство ор­га­ни­че­ско­го мира?

а) в не­бла­го­при­ят­ных усло­ви­ях раз­мно­жа­ют­ся ми­то­зом б) от­сут­ствие ядра в клет­ке

в) раз­мно­жа­ют­ся спо­ра­ми г) в ос­нов­ном ге­те­ро­троф­ные ор­га­низ­мы

6.В текст вставьте пропущенные слова

а) Прокариоты не имеют оформленного ____ .

б) Поверх плазматической мембраны у бактерий располагается оболочка из углевода ____ .

в) Бактерии, не использующие в энергетическом обмене кислород называются ____ .

7.Установите соответствие между группой организмов и её характеристиками

ХАРАКТЕРИСТИКА
а) отсутствуют митохондрии
б) клеточная стенка состоит из клетчатки
в) имеется кольцевая хромосома
г) отсутствует ядро
д) имеются хлоропласты

1) бактерии
2) водоросли

8. Вирусы открыл:

а) С.Н .Виноградский б) И.П. Павлов в) Д.И. Ивановский г) В.И. Вернадский

9. Установите соответствие между характеристиками и формами жизни




а) имеет нуклеоид
б) генетический аппарат представлен молекулами ДНК или РНК
в) является внутриклеточным паразитом
г) при неблагоприятном воздействии образует споры
д) имеет белково-липидную мембрану и капсид
е) цитоплазматическая мембрана образует мезосомы( складки мембраны)

10. Установите последовательность жизненного цикла РНК-содержащего вируса в клетке хозяина:
а) растворение оболочки клетки в месте прикрепления вируса
б) встраивание ДНК вируса в ДНК клетки хозяина
в) синтез вирусной ДНК
г) формирование новых вирусов
д) прикрепление вируса своими отростками к оболочке клетки
е) проникновение РНК вируса в клетку
ж) обратная транскрипция
з) синтез вирусных белков

1.По спо­со­бу пи­та­ния по­дав­ля­ю­щее боль­шин­ство бак­те­рий

а) ав­то­тро­фы б) са­про­тро­фы в) хе­мот­ро­фы г) сим­бион­ты

2. Клет­ка бак­те­рии в от­ли­чие от клет­ки жи­вот­но­го НЕ имеет

а) ци­то­плаз­мы б) плаз­ма­ти­че­ской мем­бра­ны в) ми­то­хон­дрий г) ри­бо­сом

3.Наследственный аппарат расположен в цитоплазме у

а) дифтерийной палочки б) вируса натуральной оспы в) инфузории-туфельки г) эвглены зелёной

4. Некоторые виды бактерий способны длительное время сохранять жизнеспособность, так как они

а) при наступлении неблагоприятных условий образуют споры

б) имеют микроскопические размеры

в) вступают в симбиоз с другими организмами

г) питаются, как правило, готовыми органическими веществами

5. Споры бактерий, в от­ли­чие от спор грибов,

а) вы­пол­ня­ют функ­цию пи­та­ния и дыхания б) об­ра­зу­ют­ся в ре­зуль­та­те по­ло­во­го размножения

в) не­об­хо­ди­мы для раз­мно­же­ния и рас­се­ле­ния на новые места

г) слу­жат при­спо­соб­ле­ни­ем к пе­ре­не­се­нию не­бла­го­при­ят­ных условий

6.В текст вставьте пропущенные слова

а) Вместо ядра у прокариот в центре располагается ___.

б) В клетках прокариот встречаются следующие органоиды _____ .

в) Бактерии, использующие в энергетическом обмене кислород называются ____ .

7. Установите соответствие между группой организмов и её характеристиками

ОСОБЕННОСТЬ КЛЕТОЧНОГО СТРОЕНИЯ
а) клетка не имеет мембранных органоидов
б) в клетке имеется ядро
в) клетка имеет кольцевую ДНК
г) клеточная стенка из муреина
д) имеются пластиды
е) клеточная стенка из целлюлозы

1) Растения
2) Бактерии

8 . Вирусы были открыты в:
а) 1828 году б) 1865 году в) 1892 году г) 1900 году

9. Установите соответствие между характеристиками и формами жизни


ХАРАКТЕРИСТИКИ
а) размножается простым делением
б) является облигатным клеточным паразитом
в) состоит из нуклеиновых кислот и белкового капсида
г) способен кристаллизоваться
д) переживает неблагоприятный период в состоянии споры
е) имеет кольцевую молекулу ДНК

10. Установите последовательность жизненного цикла РНК-содержащего вируса в клетке хозяина:
а) растворение оболочки клетки в месте прикрепления вируса
б) встраивание ДНК вируса в ДНК клетки хозяина
в) синтез вирусной ДНК
г) формирование новых вирусов
д) прикрепление вируса своими отростками к оболочке клетки
е) проникновение РНК вируса в клетку
ж) обратная транскрипция
з) синтез вирусных белков

а) кольцевая хромосома

Выберите книгу со скидкой:


ЕГЭ. Биология. Новый полный справочник для подготовки к ЕГЭ

350 руб. 155.00 руб.


ЕГЭ. Биология. Словарь-справочник школьника для подготовки к ЕГЭ

350 руб. 155.00 руб.


350 руб. 188.00 руб.


ОГЭ-2020. Биология. Тренировочные варианты

350 руб. 188.00 руб.


Один день из жизни мозга. Нейробиология сознания от рассвета до заката

350 руб. 674.00 руб.


Биология желания. Зависимость — не болезнь

350 руб. 240.00 руб.


Биология. Большой сборник тренировочных вариантов проверочных работ для подготовки к ВПР. 5 класс

350 руб. 189.00 руб.


ОГЭ. Биология. Большой сборник тематических заданий для подготовки к основному государственному экзамену

350 руб. 197.00 руб.


Биология для абитуриентов: ЕГЭ, ОГЭ и Олимпиады любого уровня сложности в 2-х тт. Том 2: Человек, Генетика, Селекция, Эволюция, Экология

350 руб. 768.00 руб.


Биология для абитуриентов: ЕГЭ, ОГЭ и Олимпиады любого уровня сложности, в 2-х тт. Том 1: Основы классификации, Клетка, Вирусы, Растения, Животные

350 руб. 768.00 руб.


ЕГЭ. Биология. Новый полный справочник для подготовки к ЕГЭ

350 руб. 197.00 руб.


350 руб. 205.00 руб.

БОЛЕЕ 58 000 КНИГ И ШИРОКИЙ ВЫБОР КАНЦТОВАРОВ! ИНФОЛАВКА




  • Берлизова Татьяна МихайловнаНаписать 0 05.11.2019

Номер материала: ДБ-780382

Добавляйте авторские материалы и получите призы от Инфоурок

Еженедельный призовой фонд 100 000 Р


Спикер: Анна Быкова (#лениваямама)

    04.11.2019 70
    02.11.2019 103
    31.10.2019 505
    31.10.2019 197
    28.10.2019 87
    28.10.2019 1171
    26.10.2019 907
    25.10.2019 143

Не нашли то что искали?

Вам будут интересны эти курсы:

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.