Анализ на врожденную устойчивость к туберкулезу

Иммунитет при туберкулезе может быть естественным и при­обретенным либо в результате перенесенного заболевания, либо как следствие вакцинации. Очень устойчивы к ТБ холоднокровные и земноводные. Наиболее восприимчивы к туберкулезной ин­фекции млекопитающие, особенно человек, а также морская свин­ка, кролик, обезьяна и крупный рогатый скот. Кроме видовой различают индивидуальную и тканевую резистентность макроорганизма к микобактериям туберкулеза. Так, на­пример, среди людей имеются индивидуумы, в разной степени устойчивые к микобактериям туберкулеза. В связи с этим среди находящихся в контакте с больным туберкулезом одни заболева­ют, а другие остаются здоровыми. Естественная устой­чивость к туберкулезу передается по наследству.

Получены доказательства роли наследственности в течении ту­беркулезного процесса. Генетические факторы влияют на ответ иммунной системы при размножении микобактерий туберкулеза в организме человека.

Приобретенный иммунитет может возникнуть при естествен­ном заражении микобактериями туберкулеза. Поступление боль­шой дозы вирулентных микобактерий приводит к возникновению заболевания.

При ту­беркулезе можно создать искусственный иммунитет с помощью ослабленного, но частично сохранившего вирулентность штамма микобактерий (БЦЖ).

Представление о нестерильном иммунитете как об обязатель­ном наличии живых микобактерий в макроорганизме для сохранения в нем противотуберкулезной резистентности устарело. Им­мунный ответ возникает вследствие воздействия антигенов микобактерий, обработанных макрофагами, на макроорганизм.

Часть иммунных лимфоцитов — Т-киллеры — совместно с макрофагами обеспечивают развитие гиперчувствительности замедленного типа (ГЗТ), т.е. клеточно­го противотуберкулезного иммунитета. Большая популяция МБТ приводит к угнетению ГЗТ и формированию некротической гранулемы. Если популяция МБТ мала, то мак­рофаги трансформируются в эпителиоидные клетки и клетки Пирогова—Лангханса, ограничивающие очаг воспаления.

Таким образом, иммунитет при туберкулезе является несте­рильным, клеточным, опосредованным Т-лимфоцитами. Иммун­ный ответ при туберкулезе реализуется по клеточному типу при кооперации макрофагов, Т- и В-лимфоцитов.

Одним из проявлений иммунитета при туберкулезе является состояние повышенной чувствительности замедленного типа. Она возникает в результате образования в организме сенсибилизированных лимфоци­тов. При повторном заражении или эндогенной реинфекции в органе, где находятся микобактерии, возникает бурная воспалительная реакция, вследствие чего блокируются лимфатические и кровеносные сосуды и туберкулез­ная инфекция купируется в очаге воспаления.

Туберкулиновые пробы являются классическим феноменом повышенной чувствительности замедленного типа. Но по выра­женности пробы нельзя судить о выраженности иммунитета.

При введении туберкулина может развиваться местная, общая и очаговая реакции.

Различают пять основных типов реакций на введенный тубер­кулин, которые характеризуют фазы аллергии.

1. Анергия — это состояние, когда макроорганизм не реагирует на введенный туберкулин. В таких случаях в организме нет и не было микобактерий туберкулеза или, возможно, они и были, но больной излечился. Анергия мо­жет наблюдаться у тяжелобольных туберкулезом, когда наступает истощение защитных сил организма.

2. Нормергия характеризуется тем, что после введения туберку­лина определенной концентрации появляются реакции на коже (инфильтрация и покраснение) соответствующих размеров.

4. Парадоксальная реакция — это состояние, когда при введе­нии туберкулина высокой концентрации реакция не возникает, а после введения его в меньшей концентрации отмечается положи­тельная туберкулиновая проба.

5. Уравнительная реакция наблюдается тогда, когда на все кон­центрации туберкулина организм реагирует одинаково.

Уравнительные и парадоксальные реакции бывают у больных с запущенными формами туберкулеза. Однако кож­ная туберкулиновая реакция и другие туберкулиновые пробы не могут полностью отражать клиническое течение заболевания. Вы­раженность аллергических реакций не всегда возрастает по мере возрастания активности туберкулезного процесса. У пожилых лю­дей аллергия обычно слабо выражена.

7. Основные статистические показатели, используемые при оценке эпидемиологической ситуации во фтизиатрии.

1. Заболеваемость — количество лиц, впервые заболевших ту­беркулезом в течение года, на 100 тыс. чел.

Заболеваемость показывает число больных, у которых впервые диагностирован активный туберкулез в течение года, в расчете на 100 тыс. чел. Так, например, если в городе с населением 150 тыс. чел. в течение года зарегистрировано 75 случаев заболевания ту­беркулезом, то в пересчете на 100 тыс. чел. число заболевших будет составлять 50.

2. Болезненность — количество болеющих туберкулезом на 100 тыс.населения, обнаруженных и зарегистрированных на конец года.

Болезненность (контингенты больных) включает в себя забо­левших как в текущем году, так и в предыдущие годы в расчете на 100 тыс. населения. Для вычисления показателя берут всех больных активным туберкулезом (контингенты больных), состоящих в I, II группах диспансерного наблюдения на конец отчетного года. Для этого к числу контингентов, состоящих на учете на начало года, прибавляют взятых на учет вновь выявленных больных в те­чение года, а также больных с рецидивами туберкулеза и боль­ных, прибывших из других мест. Из этой суммы следует вычесть число излеченных от туберкулеза, выбывших в другую местность и умерших в течение года.

3. Смертность — количество умерших от туберкулеза в течение года на 100 тыс. чел.

Принято различать смертность от всех форм туберкулеза и раздельно — от туберкулеза легких и внелегочных форм.

4. Инфицированностъ — доля лиц, положительно реагирующих на туберкулин, от числа охваченных туберкулинодиагностикой, выраженная в процентах.

Инфицированность — процент положительно реагирующих на туберкулин из числа не вакцинированных БЦЖ лиц, которым поставлена туберкулиновая проба. Инфицированность показывает распространенность туберкулезной инфекции среди населения или его отдельных групп. В число инфицированных входят люди, заразившиеся туберкулезом в разные годы, и поэтому в различных возрастных группах этот показатель отражает историю распространения инфекции среди населения. Про­цент положительных реакций у детей в возрасте до 5 лет показывает степень распространенности туберкулезной инфекции за последние годы.

Пораженность — число больных активным туберкулезом на 100 тыс. чел., которое выявляется при сплошном одномоментном обследовании населения района, города (или части территории). Такие обследования являются дорогостоящим мероприятием и их проводят тогда, когда нет достаточно достоверных данных о распространенности заболевания туберкулезом в каком-либо районе или стране или когда необходимо установить полноту выявления больных.

Не нашли то, что искали? Воспользуйтесь поиском:

Иммунитет (от латинского слова immunitas — устойчивость организма к возбудителю болезни или к яду). Иммунитет к туберкулезу обусловлен совокупностью всех наследственно полученных и индивидуально приобретенных организмом приспособлений, препятствующих проникновению и размножению в нем микобактерий туберкулеза и действию выделяемых ими продуктов. Различные представители животного мира обладают неодинаковой устойчивостью к туберкулезной инфекции. Наиболее чувствительны к ней морские свинки, обезьяны, рогатый скот. К высокоустойчивым видам животных относятся крысы, собаки, лошади, козы. Особенности их организма способствуют резкому ограничению размножения микобактерий туберкулеза; возникающие при этом специфические изменения отличаются ограниченностью поражения.

Человек обладает естественной устойчивостью к туберкулезу. Это подтверждается тем, что далеко не всегда внедрение инфекции в организм вызывает развитие заболевания.

При значительной устойчивости организма однократное поступление небольшого количества микобактерий туберкулеза активирует неспецифические и специфические естественные защитные механизмы организма, что препятствует патогенному действию микобактерий и заболевание туберкулезом не происходит.

Помимо врожденной или естественной устойчивости, в ответ на внедрившуюся инфекцию развивается так называемый приобретенный иммунитет, который может быть инфекционным вследствие заражения микобактериями туберкулеза или послевакцинным (поствакцинальным), когда ответные реакции возникают в результате вакцинации человека бациллами Кальметта — Герена (BCG).

Инфекционный, или нестерильный, иммунитет обусловливается наличием в организме возбудителя туберкулеза при отсутствии клинических проявлений болезни.

Наличие инфекционного иммунитета было доказано Кохом (феномен Коха), установившим в эксперименте, что вторичное введение бацилл туберкулеза в уже инфицированный организм ведет к формированию более доброкачественных реакций. Феномен Коха заключается в следующем: если морской свинке ввести под кожу чистую культуру микобактерий туберкулеза, то через 10—14 дней на месте инъекции появляется твердый узелок, который вскоре вскрывается; на этом месте образуется незаживающая язва. В воспалительный процесс вовлекаются регионарные лимфатические узлы. Если больную туберкулезом морскую свинку заразить повторно, то на месте инъекции в коже в ближайшие 2—3 дня образуется поверхностное изъязвление, которое быстро заживает. Лимфатические узлы в процесс не вовлекаются.

Такой результат подкожного заражения наблюдается лишь в том случае, если при повторном введении микобактерий туберкулеза количество их было невелико. В противном же случае морская свинка быстро погибает от генерализованного туберкулеза, так как иммунитет, возникший после первичного воздействия микобактерий туберкулеза, имеет пределы. Феномен Коха демонстрирует перестройку организма и возникновение иммунитета после первичного инфицирования туберкулезом.

В основе приобретенного иммунитета при туберкулезе лежат различные механизмы, ведущие прежде всего к задержке микобактерий в месте внедрения. При проникновении микобактерий во внутренние органы наблюдаются задержка их размножения и активация фагоцитоза.

По мере затухания иммунитета микобактерии туберкулеза вновь приобретают способность размножаться и вызывать патологические изменения.

Возникновение иммунитета при туберкулезе вследствие перенесенного первичного заболевания послужило основанием для многочисленных опытов по созданию искусственного иммунитета с помощью специфической противотуберкулезной вакцинации.

Первые исследования в этом направлении были предприняты Кохом. С целью вакцинации он предложил туберкулин. Но этот препарат оказался неэффективным, так как он не является полным антигеном и не обладает иммунизирующими свойствами. Последующие экспериментальные работы различных авторов показали, что создание иммунитета возможно только при условии введения в организм живых микобактерий туберкулеза. Чтобы предотвратить при этом генерализацию процесса, необходимо резко снизить их вирулентность. Подобные штаммы БК были получены французскими учеными Кальметтом и Гереном (Caimette, Giierin), после многочисленных пересевов культуры микобактерии туберкулеза бычьего типа на картофельные среды с желчью и названы по имени авторов бациллами Кальметта — Герена [сокращенно BCG (БЦЖ)].

Иммунитет после введения в организм живых, но апатогенных и слабовирулентных микобактерий Кальметта — Герена возникает не сразу. В течение 2—4 нед продолжается инкубационный период, когда вакцинированные лица еще сохраняют такую же чувствительность к туберкулезной инфекции, как до вакцинации. Микобактерии Кальметта — Герена обладают способностью размножаться в организме и сохраняться в нем, поддерживая искусственный иммунитет в течение 4—7 лет.

Вследствие проникновения в организм микобактерий туберкулеза и развития в нем специфических изменений возникает специфическая аллергия. Аллергизированный организм проявляет повышенную чувствительность к повторному введению микобактерий туберкулеза или продуктов их жизнедеятельности.

Этой особенностью инфицированного организма пользуются во фтизиатрической практике для определения инфицированности или степени аллергического состояния заболевших туберкулезом. В качестве аллергена применяются не живые микобактерии, а туберкулин. Специфическое действие туберкулина проявляется в том, что при введении в инфицированный организм малых доз его возникает ответная реакция, в то время как не зараженный туберкулезом организм не реагирует даже на большие дозы туберкулина.

При противотуберкулезной вакцинации момент появления послевакцинной аллергии связывают с началом формирования иммунитета. И, напротив, исчезновение аллергической реакции на введение туберкулина объясняется исчезновением иммунитета. На этом факте основан отбор для ревакцинации детей, подростков и лиц молодого возраста, отрицательно реагирующих на внутрикожное введение туберкулина.

Понимание важной роли генетических факторов в развитии туберкулеза пришло в первую очередь из эпидемиологических и близнецовых исследований. Так, в нескольких работах было показано, что степень устойчивости к инфекции М. tuberculosis у человека коррелирует с регионом его происхождения - предки более предрасположенных к заболеванию индивидов чаще всего происходили из областей, где туберкулез не распространен. Кроме того, частота клинического туберкулеза особенно высока во время эпидемий в популяциях, ранее не встречавшихся с данной инфекцией, в частности, у американских и канадских индейцев [17]. С середины 80-х годов было проведено множество исследований, пытающихся идентифицировать гены предрасположенности к туберкулезу или доказать уже опубликованные ассоциации. Многие из недавно проведенных исследований (Bellamy 2005, Bellamy 2006, Fernando 2006, Hill 2006, Ottenhoff 2005, Remus 2003) противоречат друг другу, и трудно прийти к единому заключению.

Исследования близнецов показали более высокий уровень конкордантности по клиническому туберкулезу у монозиготных пар по сравнению с дизиготными.

Дальнейшие исследования, проведенные на экспериментальных животных моделях, существенно дополнили имеющуюся информацию о генетических факторах предрасположенности к заболеванию. Исследования на мышах показали, что восприимчивость к инфекции такими родственными М. tuberculosis агентами как M. bovis (BCG), M. lepraemurium, M. intracellulare и М. avium, а также двумя немикобактериальными видами Salmonella typhimurium и Leishmania donovani, контролируется одним геном, локализованным в проксимальном регионе мышиной хромосомы 1. Ген получил три альтернативных названия Lsh, Ity и Bcg. У мышей предрасположенность к инфекции, контролируемая этим геном, является рецессивным признаком по сравнению с устойчивостью. Показано, что ген Lsh/lty/Bcg важен для активации макрофагов ретикулоэндотелиальной системы.

Ген Bcg был изолирован у мышей методом позиционного клонирования в 1993 г. и получил название Nramp (natural-resistance associated macrophage protein; сейчас называется Nramp 1 в связи с открытием гомолога Nramp 2). Анализ последовательности Nramp 1 у 27 инбредных линий мышей показал, что чувствительность к микобактериальной инфекции ассоциирована с миссенс мутацией, приводящей к замене глицина на аспарагиновую кислоту во втором трансмембранном домене белка.

В 1994 г. был клонирован гомолог гена Nramp 1 у человека, названный NRAMP1. Он локализован в локусе 2q35 и содержит 16 экзонов (Cellier 1994). Вклад данного гена в предрасположенность к туберкулезу у человека активно дискутируется. Опубликованы доказательства сцепления региона 2q35 с заболеванием у бразильцев и канадцев. Показано, что данный локус отвечает за скорость прогрессирования заболевания, а не за восприимчивость к инфекции. Кроме того, установлено, что NRAMP1 ассоциирован с проказой и результатами реакции Матсуда (аналог туберкулиновой пробы для проказы) у вьетнамцев. Это свидетельствует о том, что данный ген включен также в контроль инфекции близкородственной М. tuberculosis бактерии М. leprae.

Функция Nramp1 у мышей и NRAMP1 у человека пока неизвестна. Белок Nramp1 у мышей локализован в эндоцитозных компартментах и после фагоцитоза накапливается на мембранах фаголизосом. Эти данные свидетельствуют о том, что Nramp1 может ограничивать воспроизводство внутриклеточных патогенов, изменяя фаголизосомальное содержимое. Родственный ген - Nramp2 контролирует уровень ионов железа, а дрожжевой гомологичный ген SMF1 регулирует концентрацию ионов марганца. Таким образом, возможная функция белка Nrampl состоит в регуляции содержания ионов железа, марганца и других дивалентных катионов в фагосомах.

По данным многих исследований человеческий ген NRAMP1 не вносит существенного вклада в общую подверженность к туберкулезу. Однако его полиморфизм участвует в формировании отличий в подверженности к заболеванию туберкулезом у неинфицированных ранее лиц, а также оказывает влияние на течение уже возникшего заболевания.

Показано, что с туберкулезом связаны три точечные замены в гене белка, связывающего маннозу (MBL). Причем частота этих вариантов была достаточно высока как у европеоидов, так и у африканцев и австралийских аборигенов.

В последнее время получены доказательства связи туберкулеза с полиморфизмом гена рецептора к витамину D (VDR). Показаны ассоциации с туберкулезом полиморфизма генов, кодирующих интерлейкин-1в (IL1B) и его рецепторный антагонист (IL1RA). Ведутся исследования также и других генов, рассматриваемых как кандидаты на роль генов предрасположенности к туберкулезу, исходя из их функции (NOS2, TLR, NAT2, GST и др.).

Также многие исследования направлены на изучение ассоциаций иммуногенетической системы HLA с предрасположенностью к различным инфекциям. Доказано, что аллели HLA ассоциированы с восприимчивостью к таким инфекционным заболеванием, как сложная малярия, с прогрессированием ВИЧ, гепатитов B и C [24]. Исследования HLA также показали ассоциацию HLA-DR2 с лепрой или типами лепры - туберкулоидной или лепроматозной - в семейных и исследованиях типа "случай-контроль" в азиатских, африканских и американских популяциях (Geluk 2006). Многие исследователи искали ассоциации определенных аллелей HLA с восприимчивостью к туберкулезу.

Ранние исследования доказали ассоциации аллелей HLA I класса с восприимчивостью к туберкулезу, хотя было несколько проблем: найденные аллели варьировались в различных исследованиях; исследования, проведенные до начала 90-х годов, были выполнены с помощью лимфоцитотоксического метода, вероятность ошибки которого по сравнению с методом ПЦР составляет около 25% (Rajalingam 1996); не были проведены исправления для многократного исследования (Bland 1995).

Недавно был проведен мета-анализ (Kettaneh 2006), исследующий ранее определенные ассоциации HLA с восприимчивостью к туберкулезу преимущественно у взрослых людей серологическим методом. Мета-анализ показал, что не было никакой существенной ассоциации антигенов HLA I класса (А и C локусов) с предрасположенностью к туберкулезу, но был защитный эффект аллели HLA B13 (OR 0,64; 95% CI 0,50-0,81; P=0,0001). Для II класса локуса DR низкий риск развития туберкулеза был найден у людей, несущих DR3 (OR 0,72; 95% CI 0,59-0,89; P=0,002), DR7 (OR 0,65; 95% CI 0,53-0,80; P + т-клетками у пациентов с туберкулезом (Delgado 2006).41 аллель HLA-DQB1*0503 был найден среди пациентов с туберкулезом, но аллель не был найден ни у одного из 107 туберкулин-положительных контрольных людей. Этот аллель не ассоциирован с туберкулезом в других популяциях, поэтому считается специфичным для жителей Камбоджи. Однако исследование пациентов в вендской популяции в Южной Африке (Lombard 2006) показало ассоциацию туберкулеза с другими в 57-Asp гаплотипами, идентифицированными в исследовании на пациентах из Камбоджи, DRB1*1302-DQB1*0602, DRB1*1302-DQB1*0603, DRB1*1101-1121-DQB1*0301-0304 и DRB1*1101-1121-DQB1*05. Семь других исследований также доказали ассоциации некоторых из этих гаплотипов с восприимчивостью к туберкулезу (Dubaniewicz 2000, Dubaniewicz 2005, Goldfeld 1998, Kim 2005, Pospelova 2005, Teran-Escandon 1999, Wang 2001), тогда как три других исследования показали защитный эффект гаплотипов (Dubaniewicz 2005, Vejbaesya 2002, Wang 2001).

Было предположено (Lombard 2006), что данные гаплотипы, увеличивающие восприимчивость к туберкулезу, поддерживаются в популяциях, так как часть этих аллелей имеет защитный эффект против малярии (DRB1*1302-DQB1*0501) (Hill 1991), хронического гепатита B (HLA-DRB1*1302) (Thursz 1995) (Hill 2001, Wang 2003) и хронического гепатита C (DRB1*1101 и DQB1*0301) (Hong 2005) [39]. Возможно, что гетерозиготность по этим аллелям HLA может иметь защитный эффект против малярии, туберкулеза и хронических гепатитов для африканских популяций. Наоборот, хотя аллель HLA-DQ в-57-Asp и ассоциирован с восприимчивостью к туберкулезу, он также является протективным для аутоиммунного диабета 1 типа. Поэтому у европейцев, имеющих аллель HLA-DQ в-57-Ala (HLA-DQ2 и - DQ8) вместе с устойчивостью к туберкулезу имеется и восприимчивость к развитию аутоиммунного диабета 1 типа (Delgado 2006).

Молекулярные основы предрасположенности к туберкулезу пока изучены недостаточно. Связь исследованных аллельных вариантов с заболеванием и их клинические проявления слишком слабы, их роль в функциональных нарушениях обоснована недостоверно. Таким образом, молекулярные основы генетического контроля предрасположенности к туберкулезу в больших популяциях остаются пока достаточно туманными.

Вместе с тем существуют четкие причинно-следственные отношения между редкими менделирующими иммунодефицитами по Т-клеткам или фагоцитам и тяжелыми формами туберкулеза. Пациенты с такими заболеваниями в значительной степени чувствительны к инфекции не только M. tuberculosis, но и другими микроорганизмами. Недавно был описан и исследован менделирующий синдром восприимчивости к микобактериалыюй инфекции (OMIM - 209950). Люди с этим синдромом исключительно чувствительны не только к патогенным штаммам, но и к слабовирулентным видам микобактерий, таким как свободноживущие нетуберкулезные формы и BCG. При исследовании этого синдрома обнаружены мутации в генах, связанных с противоинфекционным иммунитетом: IFNG, IFGR1, - 2, TNFA, IL12B, IL12RB1 (интерферон-гамма, два его рецептора, фактор некроза опухолей альфа, ИЛ-12 и бета-1 субъединица его рецептора) (Altare 1998).

На основании имеющихся на сегодняшний день данных сформулировано предположение о непрерывном спектре генетического контроля предрасположенности к туберкулезу у человека: моногенные формы - варианты с эффектом главного гена; олигогенные формы - полигенная подверженность. Может привести к успеху изучение редких менделирующих дефектов иммунитета у отдельных пациентов с тяжелыми нераспространенными клиническими фенотипами, ведущих эффектов в отдельных семьях и в популяциях, лишь недавно столкнувшихся с микобактериальной инфекцией, а также широко распространенных полиморфизмов в популяциях с длительной историей экспозиции М. tuberculosis. Возможно, на всех трех уровнях генетического контроля участвует один ген, имеющий редкие мутации, ответственные за менделирующие тяжёлые фенотипы, относительно редкие варианты, обусловливающие основной эффект, и распространенные в популяциях полиморфизмы, в умеренной степени определяющие риск развития заболевания. Поиск такого гена (генов) - на сегодняшний день актуальная задача. Кроме того, важным представляется изучение функционального полиморфизма известных генов-кандидатов туберкулеза в популяциях различного этнического состава с разной частотой заболевания.



Самый распространенный метод, с помощью которого проводится проверка на туберкулез, — реакция Манту.



Флюорография — метод скринингового обследования, позволяющий выявить туберкулез на ранней стадии.



Анализ крови и мочи на микобактерии туберкулеза позволяет выявить патологию, когда реакция Манту неточная.



Микроскопия мазка подразумевает поиск возбудителя туберкулеза в отделяемой при кашле жидкости — мокроте.



Метод ИФА подходит в качестве уточняющего шага, а также для диагностики скрыто протекающего и внелегочного туберкулеза.



Метод ПЦР позволяет обнаружить туберкулез даже тогда, когда все другие методики показывают отрицательный результат.



Спецпредложения, скидки и акции помогут существенно сэкономить на медицинском обследовании.

Эксперты констатируют: туберкулез в России — больше, чем просто болезнь. Это — неприятное социальное клеймо, которое, помимо физических страданий, становится для заболевшего человека источником серьезного психологического дискомфорта, а иногда и вынуждает на долгие месяцы и годы отказаться от привычного образа жизни, карьеры и планов на будущее.

Лечение туберкулеза — процесс сложный и длительный, а успех во многом определяется тем, насколько своевременно было выявлено заболевание. С учетом того, что никто из нас не застрахован от заражения, крайне важно регулярно проходить профилактическое скрининговое обследование, а при малейших подозрениях на недуг — обращаться к уточняющим анализам. Лишь такое ответственное поведение убережет вас от беды.

Когда сдать анализы на туберкулез и почему не стоит с этим медлить

По мнению обывателей, туберкулезом страдают лишь неблагополучные люди, проживающие на грани нищеты, а также выходцы из мест лишения свободы. Однако такой взгляд, как отмечают врачи, не имеет ничего общего с реальностью. Пациентами фтизиатров нередко становятся и учителя, и бизнесмены, и чиновники, и даже сами доктора. Ведь ключевой фактор, приводящий к развитию заболевания, — это отнюдь не финансовое благополучие, а состояние иммунитета. Если по каким-то причинам (стресс, сопутствующее заболевание, беременность, перенесенная операция, погрешности в питании) организм ослаблен — туберкулезная палочка не упустит шанса для атаки.

Болезнь развивается постепенно, начинаясь в лимфатических узлах, а затем распространяясь по органам и тканям организма. Чаще туберкулез поражает легкие, однако в некоторых случаях, а также при отсутствии лечения бактерии размножаются в пищеварительном тракте, органах мочеполовой системы, костях, коже, оболочках головного и спинного мозга и даже в глазах.

Коварная особенность возбудителя заболевания — микобактерии туберкулеза — умение быстро приобретать устойчивость к антибактериальным препаратам, без которых невозможно успешное лечение. Ученые вынуждены разрабатывать все новые и новые лекарства, что в конечном итоге делает терапию дорогой, а также приводит к неизбежным побочным эффектам, таким как поражение печени. Поэтому важным этапом диагностики туберкулеза является определение чувствительности выявленного возбудителя к различным антибиотикам, это помогает врачам подобрать эффективное лечение.

В силу широкого распространения туберкулеза в нашей стране (70% от общего числа российских больных инфекционными и паразитарными заболеваниями умирают именно из-за такого диагноза) выявление зараженных микобактериями среди детей и взрослых организовано достаточно хорошо.

Так, детям и подросткам до 18-ти лет время от времени проводят туберкулиновые пробы, знакомые нам всем как реакция Манту. После достижения совершеннолетия основным методом диагностики становится флюорография, которую каждый гражданин РФ обязан проходить раз в два года, а определенные категории людей — каждый год. Без такого рентгеновского снимка вас, скорее всего, не допустят к работе: результаты флюорографии необходимо предъявлять при трудоустройстве, а в дальнейшем — повторять процедуру в ходе регулярных медосмотров. Таким образом медики стараются минимизировать количество больных туберкулезом, которые не получают лечение и заражают окружающих.

Помимо этих правил, провериться на туберкулез нужно в случаях, если у вас появились симптомы, указывающие на вероятность развития заболевания (слабость, ночное потоотделение, необъяснимая потеря веса, небольшое повышение температуры по вечерам, увеличение лимфоузлов, хронический кашель). Иногда догадка о возможной причине такого недомогания возникает у врача, но вы и сами можете пройти обследование и сдать анализы, чтобы исключить вероятность инфекции.

Выявить туберкулез можно несколькими путями. Основной задачей диагностики в детском возрасте является определение самого факта инфицирования, ведь в этот период вероятность, что бактерия, попавшая в организм, сразу вызовет патологический процесс, значительно выше, чем у взрослых. По этой причине ведущей методикой первичного скрининга остается туберкулиновая проба.

Оценить признаки поражения легких — наиболее типичное клиническое свидетельство начала заболевания — позволяет флюорография. В случае сомнений для уточняющей диагностики врач назначит рентген — развернутую визуализацию легочной ткани.

Туберкулин — это смесь белков, выделенных из погибших возбудителей туберкулеза. Введение небольшого количества такого препарата под кожу вызывает реакцию иммунитета у всех людей, однако в зависимости от состояния их здоровья она проявится по-разному. Так, у пациентов, в организме которых отсутствует микобактерия туберкулеза, через двое суток после пробы останется лишь незначительный след от укола (или его не будет вовсе). Если же размер красной отметины в месте введения туберкулина больше сантиметра или в этой области на коже появился гнойник — высока вероятность, что человек заражен.

Напомним, реакция Манту — метод первичной диагностики, он не может со 100%-ной вероятностью ответить на вопрос, болен ли человек туберкулезом, но позволяет выделить группу риска, которой предстоит пройти дополнительные обследования.

Поскольку степень инфицирования населения в России микобактериями туберкулеза очень высока, у лиц старше 18-ти лет врачи по умолчанию допускают контакт с инфекцией. Задачей становится поиск больных со скрыто протекающей инфекцией, которые не знают о своем состоянии.

  • Флюорография
    Оптимальным методом массовой диагностики в этом случае была и остается флюорография. Это — фотоснимок экрана рентгеновского аппарата, который можно получить очень быстро, не подвергая при этом человека значительной лучевой нагрузке. Поэтому кабинеты флюорографии есть практически во всех населенных пунктах нашей страны, а пройти процедуру можно за считанные минуты.
  • Рентген и КТ
    В случае если человек не предъявляет никаких жалоб на самочувствие, а флюорография не выявила признаков изменения легочной ткани, врачи делают заключение, что туберкулеза у пациента нет. Но для более тщательной проверки легких может быть назначено развернутое рентгенографическое исследование (когда снимки делаются не только в прямой, но и в боковой проекции, а специалист лучевой диагностики тщательно изучает каждый сантиметр изображения), а также компьютерная томография (КТ), позволяющая с наибольшей степенью достоверности выявить визуальные признаки туберкулеза и оценить степень распространения патологического процесса.

Некоторые из лабораторных анализов, назначаемых при подозрении на туберкулез, являются специфическими — они проводятся только при этом заболевании. Другие же вы можете пройти в рамках общего медицинского осмотра: это ценный источник информации о вашем состоянии здоровья, который способен указать на наличие инфекционного процесса.

  • Общий анализ крови/мочи является диагностическим стандартом при самых разных патологиях. В случае с туберкулезом исследование крови покажет повышение уровня лейкоцитов (сдвиг лейкоцитарной формулы влево) и ускоренную скорость оседания эритроцитов (СОЭ). Изменения в анализе мочи будут наблюдаться при поражении микобактериями почек и мочевыводящих путей — в этом случае в образце обнаружатся признаки амилоидоза.
  • Микроскопия мазка подразумевает поиск возбудителя туберкулеза в отделяемой при кашле жидкости — мокроте. Пациенты с подозрением на заболевание особым образом собирают мокроту в стерильную банку, после чего доставляют анализ в лабораторию. Там частицы мокроты переносят на предметное стекло и окрашивают методом по Цилю-Нильсену (при этом микобактерии туберкулеза приобретают хорошо различимый под микроскопом красный цвет, а большинство остальных микроорганизмов — синий).
  • Классический культуральный метод. Если в ходе микроскопии лаборант выявил в мокроте микобактерии в достаточном количестве (более 5-ти в поле зрения), то следующим этапом лабораторной диагностики туберкулеза становится бактериологический посев образца в питательную среду. Будучи помещенными в оптимальные температурные условия, микроорганизмы быстро растут, что позволяет уточнить их вид и провести оценку чувствительности к различным типам антибиотиков.
  • ИФА (метод иммуноферментного анализа) обнаруживает в крови у пациента антитела к туберкулезу, что указывает на инфицированность (но не обязательно на заболевание). Данный метод подходит в качестве уточняющего шага, а также для диагностики скрыто протекающего и внелегочного туберкулеза.
  • ПЦР (метод полимеразной цепной реакции) выявляет ДНК микобактерий в различных средах — в сыворотке крови, моче, мокроте, спинномозговой жидкости и так далее. Это крайне точный метод, который с достоверностью в 100% может дать ответ на вопрос о том, присутствует ли возбудитель в конкретном органе человека. Чувствительность ПЦР так высока, что в некоторых случаях этот анализ позволяет обнаружить туберкулез даже тогда, когда все другие методики показывают отрицательный результат.
  • Гистологические анализы (биопсия) подразумевают изъятие маленького фрагмента ткани из тела пациента с целью его обстоятельного микроскопического изучения. Биопсия является важным методом диагностики, особенно в ситуациях, когда исследовать биологические жидкости при помощи других анализов не представляется возможным (например, в случае вялотекущего туберкулеза костей).

Как правило, если вы или ваши дети проходите стандартный медицинский осмотр, диагностикой туберкулеза занимаются государственные медицинские организации — поликлиники и центры здоровья. Однако иногда имеет смысл обратиться в частную лабораторию.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.