Кишечная палочка автотрофный или гетеротрофный


В будущем такая бактерия, возможно, поможет удерживать СО2 в атмосфере на приемлемом уровне.

Все живые существа состоят из биомолекул – жиров, белков, углеводов, нуклеиновых кислот и пр., при этом очень многие такие молекулы организмы собирают сами из подручного сырья. Главное подручное сырьё – то, откуда берётся углерод. И здесь возможны две стратегии: либо углерод мы берём, поглощая и преобразуя органику, например, чужие жиры, белки, углеводы – и тогда нас называют гетеротрофными организмами; либо мы берём углерод из неорганического источника, например, из СО2 – и тогда мы называемся автотрофными организмами.

Самые известные автотрофы – растения: в их клетках есть набор реакций, который позволяет поглощать углекислый газ извне и сшивать его в органические молекулы; причём энергию для этих реакций растения берут от света. Гетеротрофы – животные и, например, грибы. И углерод, и энергию для синтеза собственных биомолекул гетеротрофы берут из одних и тех же органических веществ, которые каким-то образом п(р)оглотили. Среди бактерий есть и те, и другие, но, к примеру, кишечная палочка – это гетеротроф, предпочитающий углеводы.

Исследователи из Института Вейцмана превратили кишечную палочку из гетеротрофа в автотрофа – то есть заставили её вместо готовой органики поглощать углекислый газ. Естественно, её нужно было снабдить генами, которые кодировали бы нужные ферменты. Эти гены взяли у бактерий рода Pseudomonas – у тех видов Pseudomonas, которые способны поглощать СО2. Но сами по себе такие гены не подвигли бы кишечную палочку на то, чтобы стать автотрофом: для этого нужно было отключить у неё гены, которые необходимы для гетеротрофного образа жизни.

Из гетеротрофных генов отключили три, и заодно заставили бактерию жить на среде, бедной сахарами, но с большим количеством СО2. Вместо углеводов кишечной палочке дали муравьиную кислоту: она могла дать энергию для улавливания углекислого газа, но делать биомолекулы для внутреннего употребления из муравьиной кислоты было невозможно. То есть, если совсем точно, кишечную палочку попытались превратить в хемоавтотрофа – такого автотрофа, который пользуется химическим источником энергии для преобразования СО2 в органику. (Соответственно, если бы бактерию научили пользоваться светом, она бы стала фотоавтотрофом.)

Авторы работы надеялись, что дальше своё слово скажут изменчивость и отбор – в предложенных условиях активнее всего начнут размножаться те бактерии, которым мутации позволят вообще отказаться от питания готовыми сахарами (которых было ровно столько, чтобы не дать кишечным палочкам умереть с голоду и поддержать их эволюцию). Действительно, в статье в Cell говорится, что примерно через 300 дней бактерии оптимизировались и стали активно наращивать биомассу, пользуясь только углекислым газом и муравьиной кислотой. Для того, чтобы окончательно стать автотрофами, то есть чтобы отрегулировать собственные и чужие гены, которые ввели с помощью генной инженерии, бактериям понадобилось 11 мутаций. Некоторые из этих мутаций оказались в ферментах, оперирующих углекислым газом; роль других мутаций пока что вообще неясна.

Тут сама собой в голову приходит мысль, что у нас в руках появился уборщик углекислого газа из атмосферы. Однако та бактерия, которая у нас пока что есть, для этого не вполне подходит.

Во-первых, она эффективно поглощает СО2, только если его 10% в атмосфере, тогда как сейчас его, к счастью, всего 0,04.

Во-вторых, сама кишечная палочка тоже производит углекислый газ (в том числе из той же муравьиной кислоты), и производит она его больше, чем поглощает.

В-третьих, муравьиную кислоту в качестве источника энергии использовать вообще не очень удобно.

Источник: Наука и жизнь (nkj.ru)


Биотехнологи впервые создали штамм кишечной палочки, способный перерабатывать жиры в вещества, которые не отличаются по своим качествам от настоящего дизтоплива.


Все живые существа по типу питания можно разделить на два вида: автотрофы и гетеротрофы.

Каждый организм нуждается в питании для поддержания своей жизнедеятельности. Именно автотрофы составляют основу пищевой пирамиды, обеспечивая питательными веществами гетеротрофов.

Тем не менее подобное деление в биологии весьма условно – между ними не всегда существует четкая грань. Некоторые организмы способны питаться и тем, и другим способом. Их называют миксотрофами.

Кто такие автотрофы

Автотрофы это организмы, синтезирующие органические вещества из неорганических соединений. Все вещества, необходимые для развития и жизнедеятельности, они способны получить из окружающей среды.


Важнейший элемент, входящий в состав клеток любой формы жизни – углерод и его соединения. Для организмов, использующих автотрофный тип питания, его источником является углекислый газ.

Характеристика автотрофов

Для протекания процессов метаболизма живому существу необходима энергия, получаемая извне. Этот источник должен быть доступен, поскольку в связи со своим строением, большинство автотрофов практически неподвижны.


Таким образом, источником энергии для них является солнечный свет или эффект химических реакций. По такому признаку все автотрофы делятся на фототрофов и хемотрофов.

Фототрофам для создания органических соединений необходим свет. Благодаря присутствию в клетках хлоропластов, данный вид автотрофов способен фотосинтезировать. В этом процессе кванты света в ходе сложного химического взаимодействия превращаются в питательные вещества.

Хемотрофы получают энергию другим способом – из реакций окисления некоторых химических соединений.

Какие организмы относятся к автотрофам

Энергия света и углекислого газа обеспечивает жизнь подавляющего количества автотрофов – растений, к которым также относятся и мхи.


Водоросли, представляющие собой наиболее древний и простой тип растений, многообразны, а многих из них можно разглядеть только в микроскоп. Даже одноклеточные водоросли, такие как хлорелла, способны к фотосинтезу.

Содержание хлорофилла в клетках – прерогатива не только растений. Некоторые бактерии также содержат этот пигмент и способны синтезировать питательные вещества из световой энергии.


Цианобактерии – одни из древнейших микроорганизмов, питающихся подобным образом и выделяющих кислород. Возможно благодаря им атмосфера молодой Земли наполнилась кислородом миллиарды лет назад.

Микроскопические водоросли и зеленые бактерии способны вступать в симбиоз с грибами. В результате такого взаимодействия образуется симбиотический организм – лишайник.


Каждый участник симбиоза вносит свой вклад – водоросли и цианобактерии добывают питательные вещества с помощью фотосинтеза, а гриб поглощает готовые элементы.

Совмещение различных типов питания встречается не только у лишайников. Некоторые растения помимо автотрофного питания усваивают полезные вещества из тел других организмов – насекомых, мелких животных.

Такие растения называются плотоядными и используют различные виды ловушек для поимки жертвы.


Например, росянка использует клейкие волоски на кончиках листьев, листья венериной мухоловки захлопываются, а ловушка непентеса выглядит как кувшин с крышкой.

Некоторые одноклеточные водоросли также являются миксотрофами. К примеру, клеточная поверхность хламидомонады способна поглощать жидкость со всеми микроорганизмами, что там находятся.


Бактериям эвглены зеленой, чья модель поведения зависит от освещенности, может быть присуща автотрофность или гетеротрофность.

Хемотрофный тип питания распространен гораздо меньше. Энергию, которая выделяется как результат реакции окисления, способны поглощать простейшие микроорганизмы. Их уникальность заключается в независимости от энергии Солнца.

Эти микроорганизмы могут приспосабливаться к экстремальным условиям обитания – на дне океана, куда не проникает свет, в телах живых существ, в горячих гейзерах.

Автотрофы и гетеротрофы – сходства и отличия

В связи с различиями в способах питания, организмы серьезно отличаются между собой внешне и на клеточном уровне. Они занимают разные места в пищевой цепочке, используют отличные друг от друга вещества для поддержания своей жизни.

Сравнительная характеристика автотрофов и гетеротрофов

Признак Автотрофы Гетеротрофы
Место в пищевой цепи Продуцент – производит питательные вещества самостоятельно. Консумент – потребляет готовые вещества.

Редуцент – перерабатывает органические элементы до неорганических.

Источник энергии для реакций метаболизма Солнечная энергия.

Энергия, которая выделяется в результате химической реакции.

Органические вещества
Запас углеводов Крахмал Гликоген
Наличие клеточной стенки – оболочки клетки, выполняющей функции защиты. Есть Нет
Реакция на внешние раздражители Отсутствует Присутствует
Системы органов Вегетативные и репродуктивные Соматические и репродуктивные

Тем не менее, являясь тесно связанными между собой представителями жизни на планете Земля, автотрофы и гетеротрофы имеют также схожие черты – потребность в питании, воде, кислороде, солнечном свете.

Роль автотрофных и гетеротрофных организмов в биосфере

Кормильцы живой природы – подходящее определение для автотрофов. Именно они создают органику из неорганических элементов и тем самым обеспечивают пищей гетеротрофов – человека, животных, грибы, бактерий.


Некоторые микроскопические организмы являются активными хищниками: амеба обыкновенная способна захватывать добычу своими ложноножками.

Обособленно стоят вирусы, чья жизнедеятельность возможна только в живой клетке. Вне ее вирус не проявляет никаких признаков деятельности, что придает ему сходство с паразитическими формами жизни.

Природа существует, основываясь на принципе равновесия существование всех форм жизни тесно связано между собой.

Автотрофы питают гетеротрофов, создавая питательные элементы. Консументы, в результате своей жизнедеятельности, способствуют размножению первых, перенося споры и семена, опыляя цветы растений.


Завершают цепочку редуценты, разлагающие мертвую органику на неорганические элементы. Этим занимаются грибы, в том числе и микроскопические – пеницилл, дрожжи, некоторые бактерии. Именно они возвращают питательные вещества обратно в биосферу.

Так происходит круговорот веществ и элементов в природе, где каждый организм выполняет свою функцию в пищевой пирамиде.


Что это?

Автотрофы – живые организмы, способные самостоятельно синтезировать органические веществ из неорганических. Из определения понятно, что к автотрофам в первую очередь относятся зелёные наземные растения, водоросли, а также цианобактерии или сине-зелёные водоросли, т.е. все организмы, способные к фотосинтезу. Они называются фототрофами и используют солнечный свет в качестве источника энергии.


Рис. 1. Цианобактерии.

Помимо фототрофов к автотрофам относятся хемотрофы или хемоавтотрофы. В качестве источника энергии они используют энергетические связи химических веществ и с их помощью синтезируют органические вещества из неорганических. Получать органические вещества они могут в кислородной или бескислородной среде. К хемотрофам относятся некоторые виды бактерий – серобактерии, азотфиксирующие, нитрифицирующие и т.д. Хемотрофы – единственные организмы, не зависящие от солнечного света.


Рис. 2. Хемотрофы.

Гетеротрофы – живые организмы, получающие готовые органические вещества вместе с пищей. К ним относится большая часть животных от простейших до человека, грибы, хищные растения, некоторые виды бактерий. Гетеротрофы, поедающие автотрофов, являются травоядными организмами. Гетеротрофные организмы, питающиеся гетеротрофами, называются хищниками.

По способу потребления пищи гетеротрофы делятся на два вида:

  • фаготрофов (голозоев) – употребляют пищу кусками за счёт проглатывания;
  • осмотрофов – поглощают органические вещества непосредственно через клеточные стенки.

Гетеротрофы могут использовать в качестве пищи живые или неживые организмы.
В связи с этим выделяют:

  • биотрофов – поедают живые организмы (хищники, травоядные);
  • сапротрофы – потребляют мёртвые организмы (грибы, дрожжи).

К биотрофам относятся:

  • зоофаги – потребляют животных;
  • фитофаги – поедают растения.

Некоторые живые организмы могут быть одновременно зоофагами и фитофагами. Они называются всеядными. К ним относятся многие млекопитающие, в том числе человек. Паразиты в зависимости от природы хозяина могут быть зоофагами или фитофагами. Например, гриб спорынья – паразит растений, аскарида – паразит животных.

Сапротрофы могут питаться:

  • детритом (детритофаги) – грибы, дождевые черви;
  • трупами животных (некрофаги) – грифы, шакалы;
  • экскрементами (копрофаги) – личинки мух, жуки-скарабеи.


Рис. 3. Виды гетеротрофов.

Автотрофные и гетеротрофные типы питания тесно взаимосвязаны в системе пищевой цепочки. От выживаемости автотрофов зависит жизнь всей последующей цепочки гетеротрофов.

Сравнение

Признак

Автотрофы

Гетеротрофы

Звено пищевой цепочки

Способ получения органических веществ

Потребление других организмов

Солнечный свет, высокоэнергетические связи веществ

Готовые органические вещества, в первую очередь углеводы

Некоторые организмы практикуют оба вида питания и называются миксотрофами. К ним относятся насекомоядные растения, моллюск восточная изумрудная элизия, эвглена зелёная.

Что мы узнали?

Из урока 9 класса узнали об особенностях типов питания, а также о том, чем отличаются автотрофы от гетеротрофов. Автотрофы способны самостоятельно производить органические вещества, гетеротрофы питаются готовыми органическими веществами, поедая другие организмы. Некоторые живые существа одновременно способы к автотрофному и гетеротрофному питанию.

Каждый живой организм, даже одноклеточный, которым является бактерия, нуждается в питательных веществах. Царство микробов огромно, его представителей отличают между собой по многим признакам. В частности, по способу питания бактерии делятся на автотрофные и гетеротрофные организмы.

Микроорганизмы автотрофного и гетеротрофного способов питания – два огромных звена в круговороте веществ на Земле. Первые создают начальные органические элементы для жизнеобеспечения следующего яруса живых организмов.

Вторые формируют биомассу для питания животных и растений, сопровождают их в течение жизни, затем уничтожают мертвые тела вплоть до неорганических веществ, создавая пищу для автотрофов. Цикл начинается снова.

Принципиальные отличия питания двух групп микробов

Разделение бактерий на две группы стало возможным после изучения их обменных процессов. Оказалось, что одни обладают большей самостоятельностью, чем другие.

  1. Автотрофам свойственно питание неорганическими веществами простейшей структуры (водород, азот, углерод и другие). Из них бактерия самостоятельно создает сложные органические конструкции для жизнедеятельности.
  2. Гетеротрофы нуждаются в готовых органических элементах для своего питания.

Оба вида организмов могут поглощать необходимые им вещества только в виде растворов, поэтому важнейший элемент бактериального питания – вода. Еще она является поставщиком кислорода и водорода для реакций окисления/восстановления.

Автотрофные микроорганизмы

По способам питания автотрофные бактерии относятся к двум подгруппам в зависимости от своего энергообеспечения:

  • фотосинтезирующие бациллы, использующие для обменных процессов энергию светового излучения;
  • хемосинтезирующие организмы, которые для достижения этих целей прибегают к окислительно-восстановительным реакциям.

Фактически автотрофы создают органические вещества, которые используются в питании гетеротрофными организмами. А неорганические остатки колоний автотрофных железобактерий через тысячи лет могут стать месторождениями одноименных руд.

Гетеротрофные бактерии

  • микроб убивает животное или растение;
  • иммунная защита хозяина уничтожает бациллу;
  • возникает неактивное бактерионосительство или взаимовыгодное сосуществование.

Один и тот же микроорганизм в разных условиях может быть участником любой из трех ситуаций. Первоначальное его попадание в сильный молодой организм закончится смертью микроба или бактерионосительством. Как только организм хозяина ослабеет, бацилла активируется и убьет его.

По признакам взаимоотношений бактерий-гетеротрофов с живыми организмами их условно относят к трем большим группам.

  • Патогенные микробы, которые, паразитируя в организме жертвы, вызывают у нее инфекционные заболевания.
  • Сапрофитная флора – тихий паразит. Эти микробы могут жить в организме хозяина, не причиняя ему неприятностей. Они питаются омертвевшими клетками, остатками веществ, которые прошли через систему пищеварения хозяина.
  • Симбиотические микроорганизмы взамен потребляемых ресурсов организма хозяина вырабатывают для него полезные вещества. Например, клубеньковые бактерии растений или витаминопродуцирующие микроорганизмы кишечника человека. Иногда эта взаимозависимость настолько сильна, что в случае гибели микрофлоры умирает ее бывший носитель.

Значение бактерий разного способа питания для природы и человека

У гетеротрофных микробов функций больше.

  1. Естественный отбор, который они осуществляют, уничтожая слабые, больные и старые организмы.
  2. Помощь в жизнеобеспечении (клубеньковые бактерии у растений, вырабатывающие витамины – у животных).
  3. Санитарная роль состоит в гнилостном разложении останков живых существ.

Роль бактерий-гетеротрофов в естественном отборе ясна и прозрачна. Природа стремится к совершенству, поэтому слабые организмы уничтожаются, давая место для появления более сильных особей. Устраняются и генетически несовершенные субъекты, возникающие в процессе эволюции.

Оставшимся оказывается помощь для их развития. Показательны два примера из растительной и животной жизни.

  • Клубеньковые бактерии служат обогащению почвы азотом из воздуха. Они имеют специальные элементы (мезосомы), которые фиксируют азот из окружающей среды. Живут клубеньковые бактерии в корнях растений семейства бобовых.

Попадают они туда через микротрещины, потом выделяют вещества, которые стимулируют размножение клеток корня. На нем возникают клубеньковые утолщения. В них клубеньковые бактерии накапливают азот для обмена с растением на углеводы.

Этот феномен синергизма клубеньковых растений и микроорганизмов люди используют в сельском хозяйстве. Бедные азотом почвы засеивают бобовыми растениями, клубеньковые бактерии которых обогащают их азотом.

По осени их запахивают в землю. Так необходимый азот попадает из погибших растений и клубеньковых микроорганизмов в почву для последующего употребления другими культурами, которыми засеют это поле.

  • Кишечник животных изнутри выстлан гетеротрофными бактериями, которые вырабатывают витамины группы B и K. Таким образом, недостаток их в пище животных и человека восполняют бактерии-симбионты гетеротрофного способа питания.

Помимо этого, гетеротрофы используются для квашения овощей, бродильных процессов. Одним из таких является молочнокислое брожение. В результате получается большое разнообразие молочнокислых продуктов, необходимых для питания человека.

Заключительная роль гетеротрофов в жизни каждого существа – гнилостное разложение его органических остатков. Процессы гниения необходимы природе так же, как и возникновение жизни. Микроорганизмы, осуществляющие гнилостные разрушения органики, в этот период очень опасны.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.