Микотоксины в пищевых продуктах профилактика отравлений

Что такое микотоксины

Плесень присутствует вокруг человека всегда. Вещества, производимые плесневыми грибками, люди используют в медицинских целях, готовят из них лекарственные средства. Однако без обработки подобные продукты жизнедеятельности опасны.

Микотоксины – ядовитые вещества, выделяемые плесневыми грибками при подходящих условиях. Подобные соединения подавляют деятельность других микроорганизмов. Возникают в результате плесневого поражения продуктов питания, растений в процессе хранения и культивации, изготовления из них пищи. Наиболее опасными считаются микотоксины, возникающие в зерновых культурах и еде животного происхождения.

Вред и опасность микотоксинов заключается в невозможности обнаружить их при простом осмотре, они никак не влияют на внешний вид продукта. Вредные вещества сохраняются при термической обработке и заморозке.

Наиболее распространёнными грибками, провоцирующие развитие микотоксинов, считаются три вида.

  • Аспергиллус.
  • Пеницилл.
  • Фузариум.

Первые два распространяются в сырье при неправильном хранении, третий вид поражает растение в период роста. Заражение пищи возможно на любом этапе.

Влияние микотоксинов на организм человека

В настоящее время известно больше четырехсот видов микотоксинов. Все они опасны для здоровья и вызывают развитие отравлений и микотоксикозов. Выделяют несколько наиболее известных групп ядовитых веществ. В зависимости от вида ядовитого соединения действие на организм различается, однако, определяют ряд общих действий для всех видов отравляющего вещества.

  • провоцируют развитие онкологических заболеваний,
  • заставляют клетки и ткани менять свою структуру, вызывают мутацию,
  • провоцируют развитие отклонений физического характера,
  • негативно действуют на беременных женщин и плод,
  • приводят к развитию аллергических реакций организма,
  • ослабляют иммунную систему.

У животных при употреблении загрязненных кормов нарушается работа нервной системы, возможны самопроизвольные аборты, поражаются внутренние органы.

Определить присутствие вредного вещества сложно, при проникновении внутрь опасное соединение изменяется и распадается на множество разных форм, вызывая симптомы передозировки.

В каких продуктах содержатся?

Наиболее часто заражению подвержены злаковые культуры, страдают бобовые, разные семена. Нередко микотоксины возможно обнаружить в овощах, фруктах, орешках. Для распространения опасного производного грибков достаточно приемлемых условий.

  1. влажность,
  2. постоянный приток кислорода,
  3. тепло,
  4. присутствие органических веществ.

Подобные условия благоприятны для развития вредных отравляющих веществ. Образование происходит в любой пище. Выделяют несколько популярных групп, часто подверженных распространению ядов.

  • зерновые культуры,
  • бобовые,
  • разные орешки,
  • сушеные фрукты, сушеный виноград,
  • молочная продукция,
  • мясо и изделия из него,
  • хлебобулочная продукция,
  • овощи,
  • фрукты,
  • ягоды,
  • продукты, произведенные из фруктов и ягод,
  • кофе.

Зараженная еда внешне не отличается от нормальной. Определение микотоксинов в пищевых продуктах затруднено. Однако при употреблении человек чувствует специфический запах и вкус, возможно наличие горечи, плесневого привкуса.

Испорченную пищу отчистить от микотоксинов невозможно, не поможет никакая обработка. Поэтому зараженное сырье и продукты уничтожают, чтобы уменьшить возможность распространения ядовитых элементов дальше.

Виды и особенности данного яда

Опасные вещества, синтезируемые плесневыми грибками, относят к метаболическим ядам. Под действием подобных соединений у человека возникает микотоксикоз. Вызвать заболевание способен любой ядовитый продукт.

Формы и действие:

  1. Афлатоксикоз. Возникают под действием грибов вида Аспергиллус, наиболее опасная группа. Обладают повышенной токсичностью, даже минимальное количество способно привести к серьезным и необратимым нарушениям здоровья. Дозировка в 75 мг/кг массы человека считается смертельно опасной. Встречается в продуктах питания с повышенным содержанием крахмала, в мясном сырье, молоке, на сыровяленых продуктах. При попадании в организм вызывает нарушение работы печени, провоцирует появление серьезных заболеваний, не исключено появление злокачественных поражений органа. Афлотоксикоз приводит к генетическим нарушениям, проявляющимся в потомстве. Подобный микотоксин полностью разрушает клетку.
  2. Охратоксикоз. Вырабатываются грибками Аспергиллус и Пеницилл.. Негативно влияют на работу почек, обладают высокой токсичностью, нарушают эмбриональное развитие. Микотоксины в пищевых продуктах угнетают защитную функцию иммунной системы, провоцируют атрофию лимфоидной ткани.
  3. Зеараленон и производные. Вызывается грибами Фузариум. Распространяется на зерновых культурах, орешках, тропических фруктах, черном перце. Возможно появление в мясных производных, яйцах. Не обладает интенсивной токсичностью, влияет на эстроген. Для человека микотоксин не представляет особой опасности. В редких случаях провоцирует нарушение менструального цикла, воспалительные процессы в грудных железах у мужчин, нарушение половой функции.
  4. Трихотецены. Микотоксины токсичны и опасны, вызывают нарушения работы нервной системы, процесса кроветворения. У человека появляются головные боли, нарушение сна, скачки давления, отсутствует аппетит. Снижается количество эритроцитов, лейкоцитов, процесс свертывания крови замедляется. Отмечается наличие поражений на кожных покровах.
  5. Патулин. Вещество синтезируется грибками Пеницилл Аспергилл провоцирует возникновение злокачественных поражений клеток, мутацию эмбрионов. Часто встречается в продуктах переработки овощей и фруктов. В большом объеме провоцирует желудочное кровотечение, отечность легких. У животных микотоксин разрушает структуру хромосом и ДНК, негативно сказывается на репродуктивной функции. В малых дозировках для человека не опасен.

Один грибок продуцирует несколько микотоксинов. Описанные вещества – наиболее популярные, но все токсические соединения опасны и губительны для здоровья человека.

Лечение и профилактика при отравлении

  • Восстановление водно-солевого баланса. Пострадавшего отпаивают физическим раствором – электролитное соединение хлористого натрия. Благодаря ему токсины выводятся из организма, восстанавливается структура клеток, уменьшаются воспалительные процессы, укрепляется иммунная система.
  • Дают пострадавшему человеку принимать сорбенты, подобные вещества не дают токсинам распространяться дальше, способствуют их выведению.
  • Использование пробиотиков поможет восстановить работу органов пищеварительной системы и кишечника, способствует улучшению общего состояния.

Избежать интоксикации микотоксинами помогут профилактические меры. Главным является контроль производства и переработки зерновых культур.

  1. проверка семян,
  2. правильная подготовка почвы,
  3. контроль роста,
  4. тщательная и аккуратная уборка,
  5. отбор по качеству,
  6. соблюдение правил при хранении,
  7. правильная переработка.

Готовая пища также должна правильно храниться. При обнаружении признаков заплесневения требуется избавиться от подобной еды.

Микотоксины в продуктах встречаются нередко. К сожалению, часто заражение происходит на стадии изготовления еды. Некоторые токсические вещества не опасны, другие вызывают серьезные нарушения в работе внутренних органов и систем. От продуктов с признаками плесени требуется отказаться.

Видео: что такое микотоксины

Микотоксины - от греч. mykes-гриб и toxikon-яд, токсичные продукты жизнедеятельности микроскопических (плесневых) грибов.

Известно более 250 видов грибов, продуцирующих несколько сотен микотоксинов. Многие из них обладают мутагенными (в том числе канцерогенными) свойствами. Среди микотоксинов, представляющих опасность для здоровья человека и животных, наиболее распространены афлатоксины (формула I и II), трихотеценовые микотоксины, или трихотецены (III-IV), охратоксины (V), патулин (VI), зеараленон и зеараленол (VII). Большинство микотоксинов - кристаллические вещества (см. таблицу), термически стабильны, хорошо растворимые в органических растворителях. Микотоксины (за исключением охратоксинов) достаточно устойчивы к действию кислот, разрушаются щелочами с образованием нетоксичных или малотоксичных соединений. Биосинтез микротоксинов включает обычно стадию конденсации 1 молекулы ацетил-кофермента А с тремя и более молекулами малонил-кофермента А.

Афлатоксин В1: R=H

Mолекулярная масса - 312

Афлатоксин В2: R=H, положение 8 и 9 гидрированы

Mолекулярная масса - 314

Афлатоксин М1: R=OH

Mолекулярная масса - 328

Mолекулярная масса - 328

Афлатоксин G2: положения 9 и 10 гидрированы

Mолекулярная масса - 330

Токсин T-2: R1=OH, R2=R3=OAc, R4=H, R5=OCOCH2CH(CH3)2

Mолекулярная масса - 424

Токсин HT-2: R1=R2=OH, R3=OAc, R4=H, R5=OCOCH2CH(CH3)2

Mолекулярная масса - 466

Диацетоксискирпенол (ДАЗ): R1=OH, R2=R3=OAc, R4=H, R5=CH2

Mолекулярная масса - 366

Mолекулярная масса - 312

Дезоксиниваленол (ДОН): R1=R3=R4=OH, R2=Н

Mолекулярная масса - 296

3-ацетил-дезоксиниваленол: R1=OAc, R2=Н, R3=R4=OH

Mолекулярная масса - 338

15-ацетил-дезоксиниваленол: R1=R4=OH, R2=Н, R3=OAc

Mолекулярная масса - 338

Фузаренон: R1=R3=R4= OH, R2=OAc

Mолекулярная масса - 354

Охратоксин А: R=H, R1=Cl

Mолекулярная масса - 403

Охратоксин B: R=H, R1=H

Mолекулярная масса - 369

Охратоксин C: R=Cl, R1=C2H5

Mолекулярная масса - 431

Mолекулярная масса - 153

Зеараленон: X= CO

Mолекулярная масса - 318

Зеараленол: X= CHOH

Mолекулярная масса - 312

загрязнение пищевой продукт токсин микотоксин

Среди многих микотоксикозов, связанных с продуктами и кормами, зараженными токсигенными плесневыми грибами, выделяют афлатоксикоз, фузариотоксикозы и эрготизм.

Афлатоксикоз - пищевое отравление, возникающее при употреблении пищевых продуктов, содержащих афлатоксины (АТ).

В связи с широким распространением в природе продуцентов афлатоксинов, а также с интенсивными торговыми отношениями между странами афлатоксикоз представляет серьезную гигиеническую проблему.

Главными продуцентами афлатоксинов являются плесневые грибы Aspergillus flavus и Aspergillus parasiticus.

В настоящее время к афлатоксинам относится 20 соединений, из которых четыре (В1, В2, C1, C2) являются основными, а остальные их производными (M1, M2 и др.). Наибольшую опасность в отношении заражения пищевых продуктов, представляют афлатоксин B1 и афлатоксин M1 (метаболит афлатоксина B1). Афлатоксин M1 выделяется с молоком животных после потребления зараженных кормов. Наиболее опасен и высокотоксичен афлатоксин B1.

Оптимальные условия для роста аспергилл и токсинообразования: температура 27-30 оС, относительная влажность воздуха 97-98 %, рН 5-6.

Афлатоксины термостабильны и практически не разрушаются при обычной технологической и кулинарной обработке.

Главным органом - мишенью афлатоксинов является печень. Афлатоксины обладают сильным гепатотоксическим и гепатоканцерогенным действием - они вызывают первичный рак печени.

Афлатоксины выявлены в ряде злаковых культур, а также в бобовых и масличных культурах, зернах какао и кофе, в чае, молоке, мясе и др.

Продуценты афлатоксинов чаще развиваются в орехах арахиса, арахисовой муке, арахисовом масле. В США наиболее важным источником афлатоксинов является кукуруза. Длительная транспортировка этих продуктов в трюмах кораблей при повышенной температуре и влажности увеличивает содержание АТ во много раз.

Загрязнение афлатоксинами может происходить при неблагоприятных условиях роста растений, неудовлетворительной сушке и увлажнении урожая при хранении. Наиболее актуально это в тропических и субтропических странах, где климат способствует росту продуцентов афлатоксина.

С зараженным кормом афлатоксины поступают в организм животных и их остаточное количество обнаруживается в мясе, молоке, яйцах. В связи с этим во многих странах вводятся ограничения на содержание афлатоксинов в пищевых продуктах и ужесточается деятельность контролирующих органов.

Основные меры профилактики афлатоксикозов - правильное хранение зерна, предупреждение плесневения продуктов питания, систематический контроль продуктов и кормов на загрязнение афлатоксинами.

Фузариотоксикозы вызываются плесневыми грибами рода Fusarium и некоторых других видов, которые продуцируют токсины, относящиеся к классу трихотеценов. Многие из них являются чрезвычайно опасными токсинами.

Известно более 40 трихотеценовых микотоксинов (ТТМТ), из которых к основным загрязнителям пищевых продуктов и кормов животных относят Т-2 токсин, дезоксиниваленол (вомитоксин). Один и тот же вид гриба может вырабатывать несколько трихотеценовых токсинов. Наиболее интенсивно ТТМТ накапливаются при повышенной влажности и пониженной температуре.

ТТМТ относятся к сильнодействующим токсинам, которые вызывают некроз кожи и слизистых, изменения состава крови (анемия, лейкемия и др.), кровоизлияния, повреждения иммунной системы, злокачественные новообразования, уродства плода и т. д.

Алиментарно-токсическая алейкия или септическая ангина, относится к числу тяжелых заболеваний, связанных с употреблением продуктов переработки перезимовавшего под снегом зерна (хлеб, лепешки, каши т. д.). Это зерно поражается плесневыми грибами Fusarium sporotrichioides. Микотоксины этих грибов (Т-2 и др.) термоустойчивы и при тепловой обработке изделий из зерна не разрушаются.

Заболевание характеризуется некротическим поражением миндалин, мягкого неба и задней стенки глотки, поражением кроветворных органов, развитием алейкии (снижение лейкоцитов до 1000 в мл3 крови, гипохромная анемия), кровоизлияний, кровотечений и др. Летальность достигает 60-70 %.

Профилактика алиментарно-токсической алейкии включает: запрещение употребления перезимовавшего, увлажненного и заплесневелого зерна; исключение условий увлажнения и плесневения зерна при хранении; контроль за содержанием в зерне, мукомольно-крупяных и хлебобулочных изделиях трихотеценовых метаболитов, в частности Т-2 токсина и дезоксиниваленола.

Злаки поражаются как во время роста, так и в валках на поле, особенно при дождливой погоде, а также в зернохранилищах при увлажнении и плесневении зерна.

Токсины гриба оказывают нейтропное действие. Признаки заболевания нередко напоминают состояние опьянения и характеризуются состоянием возбуждения, эйфории (смех, пение и т. д.), нарушением координации движений (шаткая походка). В дальнейшем эйфория сменяется депрессией и упадком сил. При длительном использовании зараженного хлеба возможно развитие анемии и психических расстройств.

Эрготизм - заболевание, развивающееся в результате потребления продуктов из зерна, загрязненного склероциями спорыньи (Claviceps purpurea). Склероции гриба - темно-фиолетовые рожки на ржаных колосьях, иногда на ячмене и пшенице. Склероции содержат токсичные для человека и животных производные лизергиновой кислоты (эрготамин, эргозин, эргокристин и др.) и клавиновые алкалоиды (эргоклавин, сетоклавин, элимоклавин и др.). Эрготоксины обладают нейротропным и галлюциногенным действием.

Отравление возникает при употреблении зерна, муки и печеного хлеба, загрязненных склероциями спорыньи более 2 %. Выпечка пшеничного и ржаного хлеба, а также хранение муки свыше 2-х лет значительно снижает количество эрготоксинов.

Профилактика эрготизма заключается в очистке продовольственного и семенного зерна от спорыньи. В соответствии с действующей нормативной документацией в муке и крупе должно содержаться не более 0,05 % примеси спорыньи.

Микотоксикозы, вызываемые токсигенными грибами из рода Penicillium. Некоторые из них (P. claviforme, P. expansum, P. urticae) способны к выделению микотоксина патулина.

Патулин впервые был выделен как антибиотик в 1943 г. из культуры гриба Penicillium patulum, но как антибиотик он не нашел применение ввиду своей токсичности. Этот микотоксин в последние годы привлекает к себе внимание из-за его возможного канцерогенного действия.

Максимальное токсинообразование патулина наблюдается при температуре 21-30 оС. При нагревании до 80 оС в течение 10-20 мин концентрация патулина снижается до 50 %. Разрушает патулин добавление аскорбиновой кислоты и щелочная среда.

Загрязняет патулин в основном фрукты и некоторые овощи. Обнаруживается патулин в яблоках, персиках, грушах, абрикосах, вишнях; в овощных, фруктовых и ягодных консервах; в соках, напитках, овощных, фруктовых и ягодных концентратах; заплесневелом хлебе; в орехах, чае, кофе. Чаще всего загрязняются яблоки, при этом патулин чаще всего концентрируется в подгнившей части. Напротив, в томатах патулин распространяется равномерно, независимо от размеров гнили.

Допустимые уровни содержания патулина в пищевых продуктах не должны превышать 0,05 мг/кг.

Несмотря на то, что не все виды плесневых грибов, развивающихся на пищевых продуктах токсигенны, употребление даже незначительно заплесневевших продуктов опасно для здоровья.

Разработка и осуществление профилактических мероприятий в отношении микотоксикозов затруднено тем обстоятельством, что многие из них изучены недостаточно. Исходя из этого, ВОЗ поставила следующие задачи:

  • 1. Проводить широкие эпидемиологические исследования связи различных болезней невыясненной этиологии, особенно злокачественных опухолей, с уровнем загрязненности продуктов питания микотоксинами.
  • 2. Разрабатывать комплекс агротехнических мероприятий по предотвращению распространения токсичных грибов во внешней среде.
  • 3. Проводить систематический микологический контроль продуктов и кормов на загрязнения плесневыми грибами и их токсинами.

Пищевые продукты могут загрязняться не только бактериальными токсинами, но и токсинами плесневых грибов (микотоксинами).

Из особо опасных загрязнителей, регистрируемых в естественных условиях, выделяют группу микотоксинов - метаболитов микроскопических грибов, отличающихся высокой токсичностью, многие из которых обладают мутагенными, тератогенными и канцерогенными свойствами. В настоящее время известно более 250 видов плесневых грибов, продуцирующих около 100 токсических соединений, являющихся причиной алиментарных токсикозов (микотоксикозов) у человека и животных.

Плесневые грибы поражают продукты как растительного, так и животного происхождения на любом этапе их получения, транспортирования и хранения, в производственных и домашних условиях. Несвоевременная уборка урожая или недостаточная сушка его до хранения, хранение и транспортирование продуктов при недостаточной их защите от увлажнения приводят к размножению микромицетов и образованию в пищевых продуктах токсических веществ.

Микотоксины могут попадать в организм человека также через пищевые продукты - с мясом и молоком животных, которым скармливали корма, загрязненные плесневыми грибами.

Размножаясь на пищевых продуктах, многие плесневые грибы не только загрязняют их токсинами, но и ухудшают органолептические свойства этих продуктов, снижают пищевую ценность, приводят к порче, делают их непригодными для технологической переработки. Использование в животноводстве кормов, пораженных грибами, ведет к гибели или заболеванию скота и птицы.

Среди микотоксинов токсическими и канцерогенными свойствами выделяются афлатоксины, охратоксины, патулин, трихотецены и зеараленон.

3.2.1. Токсиколого-гигиеническая характеристика афлатоксинов.

Термин афлатоксины относится к группе близких соединений, продуцируемых микроскопическими грибами Aspergillus flavus и A. Parasiticus.

К семейству афлатаксинов относится более 20 соединений, 4 из которых - основные: два соединения, которые испускают голубое свечение при ультрафиолетовом облучении - афлатоксины В1 и В2, и два соединения, которые при облучении испускают зеленое свечение - афлатоксины G1 и G2.

Остальные - их производные или метаболиты. Наиболее токсичные и широко распространенные афлатоксины - В1.

Афлотоксин М1 является метаболитом афлатоксина В1 и выделяется с молоком у животных после употребления зараженного корма. Он является самым токсичным из метаболитов афлатоксина В1, его токсичность близка к токсичности самого афлатоксина В1.

По своей химической структуре афлатоксины являются фурокумаринами, обладают способностью сильно флюоресцировать при воздействии ультрафиолетового излучения, что лежит в основе практически всех физико-химических методов их обнаружения; эти соединения слаборастворимы в воде, но хорошо растворимы в органических растворителях, чувствительны к воздействию света и воздуха. В чистом виде афлатоксины нестабильны.

Несмотря на это, афлатоксины термостабильны и сохраняют токсичность при большинстве видов обработки пищевых продуктов. Полное разрушение афлатоксинов может быть достигнуто лишь путем их обработки аммиаком или гипохлоритом натрия.

Афлатоксины впервые были обнаружены в семенах арахиса (земляного ореха) и получаемых из них продуктах. Часто источником афлатоксинов является зерно кукурузы, проса, риса, пшеницы, ячменя, орехи-фисташки, миндаль, другие орехи, бобы какао и кофе, некоторые овощи и фрукты, а также семена хлопчатника и других масличных растений. Афлатоксины обнаруживают в небольших количествах в молоке, мясе, яйцах.

Влияние температуры. Грибы Aspergillus развиваются и образуют токсины на различных естественных субстратах (продовольственное сырье, пищевые продукты, корма) практически повсеместно. Они относятся к мезофиллам, оптимальная температура токсинообразования 27-30 °С, но могут развиваться в широком диапазоне температур от 6-8 ° до 44-46 °С.

Влажность имеет значение для синтеза афлатоксинов влажность пищевого продукта и атмосферного воздуха. Максимальный синтез токсинов происходит при влажности свыше 18 % для продуктов, богатых крахмалом, и свыше 9-10 % для продуктов с высоким содержанием липидов. Максимальное накопление афлатоксинов отмечается при относительной влажности атмосферного воздуха 97-98 %, а при - ниже 85 % синтез афлатоксинов прекращается.

рН среды. Для токсинообразования благоприятной является рН 5-6.

Накопление афлатоксина при благоприятных условиях отмечается на вторые сутки роста грибов, на 10 сутки - максимальная концентрация, а затем снижается. Афлатоксины при попадании в организм человека вызывает афлатоксикоз, который может быть острым, хроническим и иметь отдаленные последствия.

Главным органом мишенью для афлатоксина является печень.

Афлатоксины характеризуются широким спектром токсического действия: гепатотоксическое, гепатоканцерогенное (вызывают первичный рак печени), нейротоксическое (поражение ЦНС, параличи, судороги), мутагенное (генные и хромосомные мутации), тератогенное, иммунодепрессивное, гонадотоксическое, эмбриотоксическое, повышение проницаемости сосудов.

Канцерогенные свойства у афлатоксинов значительно больше, чем у бенз(а)пирена (в 100 раз).

Афлатоксикоз поражает человека, млекопитающих, птиц, рыб, насекомых, микроорганизмы и растения. Все животные подразделяются на 3 группы по отношению к афлатоксинам:

1 - очень чувствительные (домашние животные);

2 - чувствительные (крупный рогатый скот, домашние птицы);

3 - устойчивые (мыши и др.).

К афлатоксинам чувствительны молодые животные и самцы.

На течение афлатоксикоза существенное влияние оказывает характер питания. К усилителям действия афлатоксина на человека относится: дефицит белка в питании, полиненасыщенных жирных кислот и витамина А.

Основным в профилактике афлатоксикозов является:

1) предупреждение развития плесневых грибов и токсиноообразования на пищевых продуктах; применение и соблюдение правил современной агротехники, своевременная уборка урожая; соблюдение режимов хранения; закладка на хранение доброкачественной продукции; культивирование устойчивых сортов культур к микотоксинам; использование кормов для животных, не содержащих плесневых грибов и т.д.;

2) заплесневелые продукты не должны использоваться в питании, эти продукты бракуются целиком или в исключительных случаях, должны четко ограничены очаги плесени. Но токсины проникают вглубь продукта, в то время как мицелий расположен на поверхности;

3) использование заплесневелого сырья для производства пищевых продуктов запрещается;

4) использование для упаковки пищевых продуктов тары (мешков) с элементами плесени запрещается, так как присутствующие там споры могут переноситься в технологический процесс;

5) строгое соблюдение условий хранения и сроков реализации для потенциально опасных продуктов;

6) использование технологий, снижающих уровень афлатоксина: для получения муки - мокрый помол; из забракованного зерна следует производить муку высшего сорта или пищевой крахмал; изготовление хлебобулочных изделий, где используются дрожжи; использование рафинации растительных масел;

7) использование детоксикации афлатоксина: механический прием (сортировка зерна); физическая обработка (в условиях добавления поваренной соли, длительное кипячение в большом объеме воды, варка риса 1:2 разрушает афлатоксин на 5 %, а если 1:8 - на 40 %); облучение ультрафиолетовыми лучами (разрушение на 70 %); термообработка под давлением; химическая обработка растворами окислителей, сильных кислот и щелочей.

8) контроль за содержанием афлатоксина в продуктах и сырье.

Гигиеническое нормирование афлатоксина:

Предельно допустимые концентрации афлатоксина В1 в растительных пищевых продуктах составляют не более 0,005 мг/кг. Зерно, мука, крупы, хлеб, хлебобулочные изделия, макароны, сахаристые и мучные кондитерские изделия, какао, кофе, орехи, семена масличных культур, масла растительные нерафинированные, маргарин, кондитерские жиры, майонез.

В молоке и молочных продуктах афлатоксина В1 - 0,001 мг/кг, М1 - 0,0005 мг/кг.

В продуктах детского и профилактического питания афлатоксины не допускаются.

3.2.2. Токсиколого-гигиеническая характеристика трихотеценов.

Этот класс микотоксинов вырабатывается различными видами микроскопических грибов Fusarium. Известно более 40 трихотеценовых метаболитов (ТТМТ), наиболее изучены 4 загрязнителя: Т-2 токсин, вомитоксин, ниваленом, диацетоксиноскрипенол. Грибы рода Fusarium в естественных условиях интенсивно накапливают токсины при повышенной влажности и пониженной температуре.

Т-2 токсин максимально продуцируется при температуре 8-14 °С, при чем усиление синтеза токсина отмечается при попеременном изменении температуры (например, на F. Sporotrichiella температура до 50 °С или низкие температуры влияли на усиление токсинообразования в 2-4 раза). При 24 °С и выше токсинообразование тормозится.

Вомитоксин (дезоксиниваленол) максимально продуцируется при температуре 25-27 °С, причем максимум достигается на 40-й день роста гриба. При 19,5 °С токсинообразование прекращается.

На токсинообразование влияет химический состав среды культивирования. Существенно ускоряют синтез токсинов наличие углеводов, азота, некоторых аминокислот и минеральных веществ.

Токсины трихотеценового ряда могут вызывать специфические заболевания - фузариотоксикозы, опасные для человека и животных (гибель скота).

Токсические действия Т-2 токсина и вомитоксина: повреждение кожи и слизистой вплоть до некроза, геморрагический синдром (кровоизлияния), изменение состава крови, анемия, лейкемия, повреждение иммунной системы, терротогенное действие (уродства плода), канцерогенное действие.

Главной мишенью для Т-2 токсина является кроветворные органы (костный мозг, селезёнка, лимфоидная ткань).

Профилактика: проведение правильной агротехники, соблюдение условий хранения зерна, лабораторный контроль.

Второе заболевание - алиментарная токсическая алейкия - отмечалось в СССР во время второй мировой войны при использовании в пищу перезимовавшего под снегом зерна. Болезнь вызывалась токсигенными штаммами микрогрибов F. Sporotrichiella var, выделявшими в зерно ядовитые Т-2 токсин и НТ-2 токсин. Наиболее токсичны перезимовавшие под снегом просо и гречиха, менее опасны пшеница, рожь и ячмень. Зерно, сохранившее всхожесть, не вызывает отравления, так как в первую очередь грибами и токсинами поражается зародыш. Влажное зерно, зимовавшее в бунтах, также может стать ядовитым. Болезнь поражает как людей, так и сельскохозяйственных животных. Характеризуется заболевание поражением миндалин, затрагивает кроветворные органы (кровоизлияния, кровотечения) и почки, развивается алейкия - снижается количество лейкоцитов, а эритроцитов - повышается.

Профилактика: уборка урожая осенью, запрещается использовать перезимовавшее зерно для выпечки хлеба и т.п., предупреждение плесневения зерна при хранении, лабораторный контроль.

Уровская болезнь (болезнь Кашина - Бека). Впервые заболевание выявлено в 1860 г. Н. И. Кашиным у населения, проживающего в долине р. Уровы (Восточная Сибирь). В 1906 г. болезнь повторно зарегистрирована и изучена Е.В. Беком. Предполагают, что болезнь вызывается токсинами гриба F. Sporotrichiella-vappoae, который поражает злаковые культуры. Болезнь проявляется в нарушении остеогенеза у детей, подростков и юношей, в задержке роста отдельных костей, деформации скелета. Другая гипотеза связывает возникновение уровской болезни с высоким содержанием стронция в географической зоне проживания этих людей на фоне низкого содержания кальция.

Зерно продовольственное, в том числе пшеница, рожь, овес, ячмень, гречиха, рис, кукуруза, сорго и тритекале должно содержать Т-2 токсин не более 0,1 мг/кг, дезоксиниваленол в пшенице не более 0,7 мг/кг, в ячмене не более 1 мг/кг.

Крупа, толокно, хлопья, мука пшеничная, ячменная содержание Т-2 токсина не более 0,1 мг/кг, дезоксиниваленола в продуктах переработки из пшеницы не более 0,7 мг/кг, а из ячменя не более 1 мг/кг.

Мучные кондитерские изделия содержание дезоксиниваленола не более 0,7 мг/кг.

3.2.3. Токсиколого-гигиеническая характеристика эрготоксинов

Эрготоксины - основные действующие вещества из плодовых тел (склероциев) паразитического гриба спорыньи. Этот гриб поражает более 150 видов дикорастущих и культурных злаков, главным образом, рожь, а также пшеницу, овес, ячмень и др. Эрготоксины обладают выраженной биологической активностью. Под их действием наступает спазм гладкой мускулатуры кровеносных сосудов, снижаются эффекты от адреналина и серотонина, развиваются галлюцинации, стимулируется дыхательный центр. Дегидрированные производные алкалоидов спорыньи - дигидроэрготоксин и дигидроэрготамин - обладают альфа-адреноблокирующей активностью и вызывают снижение артериального давления.

Отравления возникают при попадании в пищеварительную систему склероциев спорыньи (вместе с зерном, мукой, печеным хлебом). При содержании в зерне более 2 % по массе склероциев возможно развитие массовых отравлений. В процессе выпечки хлеба из муки, загрязненной эрготоксинами, их содержание в пшеничном хлебе падает почти до нуля, а в ржаном - на 85 %. При длительном хранении муки с измельченными склероциями в течение не менее 2-х лет содержание в ней эрготоксинов значительно снижается.

В продовольственном зерне примесь склероциев спорыньи не допускается; в фуражном - допускается не более 0,05 мг/кг.

3.2.4. Токсиколого-гигиеническая характеристика зеараленона

Микроскопические грибы рода Fusarium помимо ТТМТ могут продуцировать и другие микотоксины, среди которых наибольшее практическое значение имеет зеараленон.

Зеараленон обладает сине-зеленой флюоресценцией в ультрафиолетовом свете.

Основным продуцентом зеараленона являет F. Graminearum. Максимальное токсинообразование наблюдается при культивировании F. graminearum на зерновых субстратах (рис, пшеница, кукуруза). При этом инкубация проводится в два этапа: сначала две недели и при 22-25 °С, а затем 8 недель при 15 °С. При влажности зерна ниже 25 % токсинообразование резко снижается.

Установлено, что зеараленон обнаруживается в зерне, в частности в кукурузе, пшенице, ячмене, овсе, сорго, кунжуте, а также кукурузном силосе, масле, крахмале, если они произведены из кукурузы, содержащей микотоксин.

Токсичность зеараленона заключается в развитии тяжелого гиперэстрогенизма у домашнего скота и мутагенном действии на организм человека.

Предельно допустимая концентрация зеараленона в зерне, зерновых продуктах, орехах, семенах масличных растений, жирах, маслах, белковых изолятах - 1 мг/кг; в продуктах детского и диетического питания его присутствие не допускается.

3.2.5. Токсиколого-гигиеническая характеристика патулина

Патулин был впервые выделен в 1943 г. из культуры Penicillium patulum как антибиотик.

Обнаружение у патулина высокой токсичности, мутагенных и канцерогенных свойств, а также выявление его в качестве загрязнителя пищевых продуктов заставляет отнести патулин к особо опасным микотоксинам.

Продуценты патулина поражают преимущественно фрукты и некоторые овощи. Токсин обнаруживается в яблоках, грушах, абрикосах, персиках, черешне, винограде, бананах, клубнике, голубике, бруснике, облепихе, томатах, а также фруктовых соках, компотах, пюре и джемах. Чаще, чем другие плоды, патулином загрязняются яблоки. Следует подчеркнуть, что патулин концентрируется в основном в подгнившей части яблока, в то время как в неповрежденной часто определяется только около 1 % общего количества токсинов.

Однако в томатах независимо от размеров подгнившего участка патулин распределяется равномерно по всей ткани. Экспериментально доказано, что цитрусовые и некоторые овощные культуры (картофель, лук, редис, редька, баклажаны, цветная капуста, тыква и хрен) обладают естественной резистентностью к заражению продуцентами патулина.

Максимальное токсинообразование наблюдается обычно при температуре 21-30 °С.

Патулин оказывает мутагенное действие на организм человека и животного - изменение генетической информации, тератогенное действие, приводящее к появлению уродств и отклонениям развитии молодого организма, и некротическое действие, вызывающее гибель клеток.

Предельно допустимая концентрация патулина в фруктовых и овощных соках, пюре, составляет не более 0,05 мг/кг; в продуктах детского и диетического питания присутствие следов патулина не допускается.

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.