Характеристика діяльності кори головного мозку

За функціями поля кори великих півкуль неоднозначні. Вивчення ролі окремих зон кори методом подразнення стало основою для вчення про локалізацію

Роль кори головного мозку в системній організації діяльності організму

Медицина, физкультура, здравоохранение

Другие материалы по предмету

Роль кори головного мозку в системній організації діяльності організму

  1. Структурно-функціональні особливості кори
  2. Роль кортикальних колонок
  3. Проекційні та асоціативні поля
  4. Методи вивчення кори великих півкуль
  5. Електроенцефалографія

Кора великих півкуль зявляється вперше у риб у вигляді нюхових клітин, але видалення їх суттєво не впливає на поведінку риб. В амфібій вже є нюхова кора. Півкулі зявляються лише у птахів, у них при видаленні півкуль помітно змінюється поведінка: самі не можуть злетіти, самі не можуть їсти, вють гнізда, але не реагують на крик пташенят, у них зникає материнський інстинкт. Повного розвитку кора досягає у ссавців. У них видалення кори викликає втрату материнського інстинкту (собаки можуть поїдати своїх щенят), тварини не обходять перепони, натикаються на предмети, не йдуть на клич господаря, не орієнтуються в просторі, у них зникає захисний інстинкт. Найбільшу площу займає кора у приматів 2200 см2. В них найкраще розвинені борозни та звивини. Функції кори повністю забезпечують пристосування до життя та вищу психічну діяльність. Видалення великих півкуль призводить до втрати здатності до самостійного життя.

У людини кора великих півкуль забезпечує такі функції:

- Взаємодія організму з навколишнім середовищем.

- Регуляція діяльності внутрішніх органів.

- Регуляція обміну речовин та енергії.

- Вища нервова діяльність мова, память, мислення, свідомість.

Кора головного мозку є вищим відділом ЦНС. Це сіра речовина товщиною 3-5 мм, вкриває півкулі головного мозку. Вона займає площу 22 м2, утворюючи багаточисельні складки. В складі кори до 109-1010 нейронів, які утворюють 6 шарів:

  1. Молекулярний шар має мало клітин, їх волокна утворюють поверхневе густе тангенціальне сплетіння з дендритами другого шару.
  2. Зовнішній зернистий шар пірамідні клітини середньої величини, волокна яких розташовані радіально.
  3. Внутрішній зернистий шар зірчасті клітини, волокна яких розташовані горизонтально.
  4. Внутрішній пірамідний (гангліозний) шар це гігантські пірамідні клітини Беца, які мають довгі дендрити, що тягнуться до молекулярного шару.
  5. Поліморфний шар це шар веретеноподібних клітин.

Звязок кори великих півкуль з підкорковими структурами здійснюється за допомогою аферентних і еферентних волокон. Аферентні волокна називаються кортикопетальними, вони несуть інформацію в кору. Основними з них є таламокортикальн волокна. Це прямі аферентні шляхи, які розгалужуються у внутрішньому зернистому шарі і не дають колатералей. Невелика частина волокон йде в молекулярний шар, утворюючи колатеральні еферентні волокна, які називаються кортикофугальними, вони несуть інформацію від кори до підкоркових структур. Ці волокна діляться на 3 групи:

  1. Проекційні прямі еферентні волокна, що утворюють провідні шляхи (кортикоспінальні, кортикоталамічні)
  2. Асоціативні - волокна, що утворюють безліч колатералей та йдуть в різні підкоркові зони однойменної півкулі.
  3. Комісуральні - волокна, що йдуть від кори в складі мозолистого тіла і зєднують зони кори однієї півкулі з підкорковими зонами другої.

1, 2 шари кори великих півкуль забезпечують аналіз та синтез отриманої інформації, мають багато асоціативних волокон.

3, 4 шари кори великих півкуль одержують інформацію від усіх органів та частин тіла за рахунок кортикопетальних волокон.

5, 6 шари кори великих півкуль це рухові нейрони, звідси починаються рухові шляхи, що включають кортикофугальні волокна.

В шарах клітини розміщуються перпендикулярно до поверхні кори, утворюючи ланцюги. Елементарні нервові ланцюги відповідають за переробку певної інформації. Такий функціональний принцип названо кортикальні колонки. Це елементарна функціональна одиниця, в якій здійснюється локальна переробка інформації від рецепторів однієї модальності. Кожна колонка має діаметр 500-1000 мкм, в складі яких розміщується 5-6 нейронів. Пірамідні клітини орієнтовані вертикально, їх аксони утворюють зворотні колатералі, які забезпечують як процеси полегшення в межах мікромодуля, так і гальмування між мікромодулями. Аксони зірчастих клітин ідуть через інтернейрони горизонтально, тому вони, головним чином, забезпечують гальмівні процеси. Веретеноподібні клітини мають довгі аксони, які орієнтовані як горизонтально, так і вертикально. Вони формують кортико-таламічні шляхи.

Мікромодулі обєднуються в макромодулі завдяки горизонтальним розгалуженням терміналей. В колонці можуть бути прості та складні нейрони. Поряд з цим, в корі існує система, яка зчитує елементарні процеси в колонках та обєднує всю інформацію. Формування таких систем зумовлено внутрішньо-кортикальними звязками між окремими макромодулями. Збудження одного мікромодуля викликає гальмування сусідніх. Активація мікромодулів відбувається за рахунок горизонтальних волокон таламокортикальних шляхів.

За функціями поля кори великих півкуль неоднозначні. Вивчення ролі окремих зон кори методом подразнення стало основою для вчення про локалізацію функцій в корі великих півкуль. Пізніше І.П. Павлов методом видалення в поєднанні з методом умовних рефлексів, підтвердив локалізацію функцій в корі. Разом з тим, Лешлі та ін. вважали, що різні зони кори великих півкуль є еквіпотенціальними, тобто однаковими за функціями так виникла теорія еквіпотенціальності. Така думка була помилковою, бо тільки у нижчих тварин кора не має спеціалізованих зон. Так Лешлі, зруйнувавши кору щурів, знайшов, що порушення навиків руху щурів по лабіринту не залежить від місця руйнування. Досліди на тваринах з використанням мікроелектродного методу показали, що зони кори неоднозначні за функціями. Проекційні поля, створені мономодальними нейронами, одержують інформацію від рецепторів через переключаючі ядра таламуса. Вони оцінюють вид подразнення. На їх долю припадає 14% кори. Це специфічні проекційні поля. Асоціативні поля (86%) знаходяться навколо проекційних полів. Це полімодальні нейрони, які одержують інформацію від асоціативних ядер таламуса. Вони оцінюють джерело подразнення, його властивості та відстань до нього. Серед асоціативних полів є вищі поля, які забезпечують психічну діяльність людини, а також є поля, що формують память, індивідуальний досвід, прогнозування, передбачення. Це орбіто-фронтальні поля та тімяна кора. Ці поля співпадають з функціональними зонами, де знаходяться нервові центри.

Представництво всіх видів чутливості в задній центральній звивині.

Задня центральна звивина поля по Бродману 1, 2, 3 корковий центр всіх видів шкірної та пропріоцептивної чутливості. Вона має такі особливості:

  1. Проекція протилежної сторони тіла розміщена вниз головою.
  2. Має місце соматотопічна організація для кожної частини тіла.
  3. Поля шкірної чутливості неоднозначні за площею, так, проекційні поля для обличчя, губ, кистей рук займають найбільшу площу.

При подразненні цієї зони виникає відчуття оніміння, тиску, повзання мурашок. При руйнуванні її зникає чутливість на протилежній стороні анестезія.

Проекція рухових центрів в передній центральній звивині.

Передня центральна звивина поля по Бродману 4, 6 моторна зона. Вона забезпечує згинання, розгинання, пронацію, супінацію, ротацію. Вона також має соматотопічну організацію, але тут найбільшу площу займають мімічні мязи обличчя, язик, кисті рук. При подразнення цієї зони виникає скорочення мязів протилежної сторони тіла. При пошкодженні розвиваються парези та паралічі. Парез це обмеження довільних рухів. Параліч це відсутність рухів.

Сенсорні системи мають подвійну організацію:

а) SS1 це сомато-сенсорна зона І, знаходиться в задній центральній звивині, виконує дискримінативний аналіз, тобто оцінює форму і характер поверхні предмету, приймає участь в складних рухах;

б) SS2 це сомато-сенсорна зона ІІ, має відношення до формування регуляції довільних рухів, орієнтації голови у напрямку звуків. Обидві зони мають сенсорні та моторні входи.

в) SМ1 це сомато-моторна зона І, знаходиться в передній центральній звивині;

г) SМ2 це сомато-моторна зона ІІ, знаходиться там же на медіальній поверхні кори. Обидві зони забезпечують відчуття просторової протяжності, стереогноз, відчуття ваги.

Потилична кора це корковий центр зору. Він оцінює вигляд, форму, розміри та колір предмету. При пошкодження виникає геміанопсія (випадає частина поля зору), або виникає зорова агнозія (людина не впізнає знайомі предмети).

Верхня скронева звивина корковий центр слуху (звивина Гешля поля 41, 42). Оцінює звукові подразнення. При пошкодженні людина не може повторити сказане слово, хоч і чує, людина не розуміє звернену до неї мову, це слухова агнозія.

Задня частина нижньої лобної звивини (центр Брока) це моторний центр мови. У правців він розміщується зліва. При пошкодження людина втрачає здатність до виразного мовлення, узгодження слів у реченні моторна афазія.

Задня частина верхньої лобної звивини (центр Верніке) це сенсорний центр мови, відповідає за сприйняття мови. При пошкодженні людина не розуміє звернену до неї мову сенсорна афазія.

Задній відділ середньої лобної закрутки руховий центр письма. При пошкодженні людина втрачає здатність писати аграфія.

[youtube.player]

Взаємовідносини борозен і звивини з кістками і швами черепа у новонародженої дитини інші, ніж у дорослого. Основні борозни (центральна, латеральна) виражені добре, але гілки основних борозен і дрібні звивини позначені слабо. Надалі в процесі розвитку кори борозни стають глибшими, а звивини між ними рельєфніше. Співвідношення борозен, звивин і швів черепа, характерне для дорослої людини, встановлюється у дітей в 6-8 років.

Протягом перших місяців життя розвиток кори йде дуже швидкими темпами. Більшість нейронів набувають зрілу форму, інтенсивно відбуваються процеси мієлінізації нервових волокон, що дозволяють реагувати на зовнішні подразники більш диференційовано.

У процесі еволюції людини як біологічного виду, а також у процесі онтогенезу - індивідуального розвитку кожної людини - відбувається кортікалізаціі функцій, тобто включення кори головного мозку в регуляцію функцій нижележащих структур мозку. Це дозволяє організувати більш досконалу, що враховує індивідуальний досвід, збережений у пам'яті, регуляцію функцій організму. Надалі, у міру автоматизації тієї чи іншої реакції, виконання її знову передається підкірковим структурам з формуванням автоматичного реагування.

Різні коркові зони дозрівають нерівномірно. Найбільш рано дозріває соматосенсорная і рухова кора, дещо пізніше - зорова і слухова. Особливо інтенсивним протягом першого півріччя життя є розвиток зорової кори, що тягне за собою розвиток інших зон мозку та їх інтеграцію. Дозрівання сенсорних і моторних зон в основному закінчується до 3 років. Значно пізніше дозріває асоціативна кора: до 7 років формуються її основні зв'язки, а остаточна диференціювання, формування нейронних ансамблів і зв`язків з іншими відділами мозку відбуваються до підліткового віку. Найбільш пізно (ближче до 9 років) дозрівають лобні області кори. Поступовість дозрівання структур кори великих півкуль визначає вікові особливості вищих нервових функцій і поведінкових реакцій дітей різних вікових груп.

Загальна площа кори головного мозку людини близько 2200 см2, число нейронів кори перевищує 10 млрд. У складі кори маються пірамідні, зірчасті, веретеноподібні нейрони.

Пірамідні нейрони мають різну величину, аксон пірамідного нейрона, як правило, проходить через білу речовину в інші зони кори або в інші мозкові структури.

Зірчасті клітини мають короткі добре гілкуються дендрити і короткий аксон, що забезпечує зв'язки нейронів в межах самої кори головного мозку.

Веретеноподібні нейрони забезпечують вертикальні або горизонтальні взаємозв'язку нейронів різних шарів кори.

Кора головного мозку має переважно шестіслойних будову (рис. 11.10).


Рис. 11.10. Будова кори головного мозку

Шар I - верхній молекулярний, представлений в основному ветвлениями висхідних дендритів пірамідних нейронів, серед яких розташовані рідкісні горизонтальні клітини і клітини-зерна, сюди ж приходять волокна неспецифічних ядер таламуса, що регулюють через дендрити цього шару рівень збудливості кори головного мозку.

Шар II - зовнішній зернистий, складається з зірчастих клітин, що визначають тривалість циркулювання збудження в корі головного мозку, тобто мають відношення до пам'яті.

Шар III - зовнішній пірамідний, формується з пірамідних клітин малої величини і разом з II шаром забезпечує Корко-коркові зв'язку різних звивин мозку.

Шар IV - внутрішній зернистий, містить переважно зірчасті клітини. Тут закінчуються специфічні таламокортікальние шляху, тобто шляху, що починаються від рецепторів аналізаторів.

Шар V - внутрішній пірамідний (гангліозний), шар великих пірамід, які є вихідними нейронами, аксони їх йдуть в стовбур мозку і спинний мозок. У руховій зоні в цьому шарі знаходяться гігантські пірамідні клітини, відкриті Бецом (клітини Беца).

Шар VI - шар поліморфних клітин, більшість нейронів цього шару утворюють кортико-таламические шляху.

Розподіл нейронів по шарах в різних областях кори дозволило виділити в мозку людини 53 цитоархитектонических поля (поля Бродмана), які вдосконалюються в міру розвитку кори головного мозку. У людини і вищих ссавців розрізняють, поряд з первинними, вторинні і третинні коркові поля, що забезпечують асоціацію функцій даного аналізатора з функціями інших аналізаторів.

Особливістю коркових полів є екранний принцип їх функціонування, що полягає в тому, що рецептор проектує свій сигнал не так на один нейрон кори, а на поле нейронів, яке утворюється їх зв'язками. У результаті сигнал фокусується не крапка в точку, а на безлічі різноманітних нейронів, що забезпечує його повний аналіз і можливість передачі в інші зацікавлені структури. Так, одне волокно, що приходить в зорову область кори, може активувати зону розміром 0,1 мм. Це означає, що один аксон розподіляє свою дію на більш ніж 5000 нейронів.

Функції окремих зон нової кори визначаються особливостями її структурної організації, зв'язками з іншими структурами мозку, участю в сприйнятті, зберіганні та відтворенні інформації при організації та реалізації поведінки, регуляції функцій сенсорних систем, внутрішніх органів.

Структурний відмінність ділянок кори головного мозку пов'язане з різницею їхніх функцій. У корі головного мозку виділяють сенсорні, моторні і асоціативні області (рис. 11.11).


Рис. 11.11. Цітоархітектоніческі поля Бродмана

Коркові кінці аналізаторів мають свою топографію - локальне розташування в певних ділянках кори головного мозку. Вони називаються сенсорними областями кори головного мозку. Коркові кінці аналізаторів різних сенсорних систем перекриваються. Крім цього, у кожній сенсорній системі кори маються полісенсорній нейрони, які реагують не тільки на "свій" адекватний стимул, але й на сигнали інших сенсорних систем. Ці механізми лежать в основі формування полімодальних зв'язків, що забезпечують сочетанную реакцію на різні подразники.

Шкірна рецептірующая система, таламокортікальние шляху проектуються на задню центральну звивину. Тут мається суворе соматотопическую поділ. На верхні відділи цієї звивини проектуються рецептивні поля шкіри нижніх кінцівок, на середні - тулуба, на нижні відділи - руки, голови.

На задню центральну звивину в основному проектується больова і температурна чутливість. У корі тім'яної частки (поля 5 і 7, див. Рис. 11.11), де також закінчуються провідні шляхи чутливості, здійснюється більш складний аналіз: локалізація роздратування, дискримінація, стереогіоз. При пошкодженнях кори особливо сильно порушуються функції дистальних відділів кінцівок, особливо рук.

Зорова система знаходиться в потиличній частці мозку: поля 17, 18, 19. Центральний зоровий шлях закінчується в поле 17; він інформує про наявність та інтенсивності зорового сигналу. У полях 18 і 19 аналізуються колір, форма, розміри, якість предметів. Поразка поля 19 кори головного мозку призводить до того, що хворий бачить, але не впізнає предмет (зорова агнозія, при цьому втрачається також колірна пам'ять).

Слухова система проектується в поперечних скроневих звивинах (звивини Гешля), в глибині задніх відділів латеральної (Сільвієвій) борозни (поля 41, 42, 52). Саме тут закінчуються аксони задніх горбів Четверохолміе і латеральних колінчастих тіл.

Нюхова система проектується в області переднього кінця гіппокампальних звивини (поле 34). Кора цій області має не шести-, а тришарове будову. При подразненні відзначаються нюхові галюцинації, пошкодження її веде до аносмія (втрати нюху).

Смакова система проектується в гіппокампальних звивині по сусідству з нюхової областю кори (поле 43).

У передній центральній звивині розташовані зони, подразнення яких викликає рух, вони представлені по соматотопическую типу, але зовсім інакше: у верхніх відділах звивини - нижні кінцівки, в нижніх - верхні. Це моторні області кори головного мозку.

Спереду від передньої центральної звивини лежать премоторні поля 6 і 8. Вони організовують не ізольовані, а комплексні, координовані, стереотипні рухи. Ці поля також забезпечують регуляцію тонусу гладкої мускулатури, пластичний тонус м'язів через підкіркові структури.

У реалізації моторних функцій беруть участь також друга лобова звивина, потилична, верхнетеменная області.

Рухова область кори як ніяка інша має велику кількість зв'язків з іншими аналізаторами, чим, мабуть, і зумовлена наявність в пий значного числа полісенсорних нейронів.

Всі сенсорні проекційні зони і моторні області кори займають менше 20% поверхні кори головного мозку. Решта - це асоціативні області. Кожна асоціативна область кори пов'язана потужними зв'язками з кількома проекційними областями. У асоціативних областях відбувається інтеграція разномодальних інформації, що дозволяє здійснювати усвідомлення надходить інформації та складні поведінкові акти. Асоціативні області мозку у людини найбільш виражені в лобової, тім'яної і скроневій.

Кожна проекційна область кори оточена асоціативними областями. Нейрони цих областей здатні до сприйняття разномодальних інформації, володіють великими здібностями до навчання. Полісенсорній нейронів асоціативної області кори забезпечує їх участь в об'єднанні, що надходить, забезпеченні взаємодії сенсорних і моторних областей кори.

Так, в тім'яній асоціативної області кори формуються суб'єктивні уявлення про навколишній простір, про нашому тілі. Це стає можливим завдяки зіставленню соматосенсорной, пропріоцептивної і зорової інформації. Лобові асоціативні поля мають зв'язку з лимбичним відділом мозку і беруть участь в організації програм дії при реалізації складних поведінкових актів з урахуванням їх емоційного забарвлення.

Першою і найбільш характерною рисою асоціативних областей кори є здатність їх нейронів сприймати разномодальную інформацію, причому сюди надходить не первинна, а вже оброблена інформація з виділенням біологічної значущості сигналу. Це дозволяє формувати програму цілеспрямованої поведінкового акту.

Друга особливість асоціативної області кори полягає в здатності до пластичних перебудовам в залежності від значимості надходить.

Третя особливість асоціативної області кори виявляється у тривалому зберіганні слідів сенсорних впливів. Руйнування асоціативної області призводить до виражених порушень навчання, пам'яті.

Розподіл функцій по областях мозку не є абсолютним. Встановлено, що практично всі області мозку мають полісенсорній нейрони, які певною мірою можуть брати на себе функцію пошкоджених модальноспсціфічсскіх нейронів. Це дозволяє компенсувати пошкодження структур мозку в ті періоди дитинства, коли пошкоджена функція ще не закріплена жорстко в структурі нервової тканини.

Важливою особливістю кори головного мозку є її здатність тривало зберігати сліди збудження. Це властивість надає корі виняткове значення в механізмах асоціативної переробки та зберігання інформації, накопичення знань.

[youtube.player]

Окремі ділянки кори мають різне функціональне значення. Разом з підкірковими центрами, стовбуром мозку і спинним мозком великий мозок об'єднує окремі частини організму в єдине ціле, здійснює нервову регуляцію всіх органів (рис. 55, 56).

У кору великого мозку надходять доцентрові імпульси від рецепторів. Кожному рецепторному апарату відповідає в корі ділянка, яку І.П Павлов назвав кірковим ядром аналізатора. Ділянка кори, де розташовані кіркові ядра аналізаторів, названі сенсорними зонами кори великого мозку.

Ядерна зона рухового аналізатора (сомато-сенсорна зона), куди надходять збудження від рецепторів суглобів, скелетних м'язів і сухожилок, розташована в передню- і задньоцентральних ділянках кори. У межах передньої центральної закрутки найвище розміщені центри для м'язів нижньої кінцівки, нижче - для м'язів тулуба, потім верхньої кінцівки і, нарешті, центри м'язів голови. Ураження цієї зони призводить до паралічу протилежної половини тіла.


Рис. 55. Зовнішня будова головного мозку (за дорлінг кіндерслі, 2003)

Передцентральна звивина (gyrus precentralis) і прицентральна часіка (lobulus paracentralis) лобової частки становлять руховий центр кори і є аналізатором кінестезичних імпульсів, які надходять від посмугованих м'язів, суглобів, сухожилків. Тут замикаються рухові умовні рефлекси. У верхній ділянці перед центральної звивини розташовані клітинні групи, що належать до м'язів нижніх кінцівок, нижче - верхніх кінцівок, ще нижче - неврони, пов'язані з іннервацією м'язів голови. Оскільки нервові шляхи перехрещуються, праві рухові центри кори пов'язані з мускулатурою лівої сторони тіла і навпаки.

У задній частині середньої лобової звивини міститься центр узгодженого руху голови й очей (окоруховий, блоковий, відвідний і додатковий нерви).


Рис. 56. Кіркові поля (за Дорлінг Кіндерслі, 2003)

У задньому відділі нижньої лобової звивини розміщена зона Брока - руховий центр мови, який разом із центром Верніке забезпечують здатність людини читати, писати, чути, вимовляти і розуміти мову.

Ушкодження різних полів кори лобової частки може призвести: до підвищення агресивності й послаблення реакції страху; зростання пасивно-захисних умовних рефлексів; порушення харчових і захисних умовних рефлексів.

У таких людей спостерігається втрата ініціативи, апатія, порушення абстрактного мислення, нездатність до творчого мислення, розгальмування нижчих емоцій і потягів, розлади мовлення і понятійного мислення.

У задній частині лобової звивини розташований центр письма, ураження якого призводить до порушення навичок письма під контролем зору.

У лівій (у лівшів у правій) нижній тім'яній часточці розташований центр, який координує цілеспрямовані рухи. Він функціонує за типом тимчасових зв'язків, які виникають протягом індивідуального життя, тобто умовних рефлексів. У разі ушкодження цього центру елементи довільних рухів зберігаються, але порушуються цілеспрямовані дії (апраксія).

У верхній тім'яній частці (задньоцентральна звивина) розміщений кірковий центр аналізаторів чутливості (больової, температурної, дотикової), або сомато-сенсорна кора. Ураження кори у цій частині призводить до часткової або повної анестезії (втрата чутливості).

Ураження кори в ділянці верхньої тім'яної частки призводить до зниження больової чутливості і порушення стереогноза - впізнавання предметів на дотик без допомоги зору.

У нижній тім'яній частині розташований центр праксії, який регулює здатність здійснювати координаційні рухи, які складають основу робочих процесів і потребують спеціального навчання.

У кутовій звивині тім'яної частки розташований зоровий центр мови. Його ураження призводить до неможливості розуміння письма (алексія).

Тім'яна ділянка - це апарат вищої інтегративної діяльності мозку людини, вона безпосередньо стосується процесів біологічної і соціальної адаптації, є фізіологічною основою вищих психічних функцій.

Локалізація статичного аналізатора (центр збереження рівноваги і положення тіла в просторі) - кора верхньої та середньої скроневих звивин. Ушкодження цього центру призводить до атаксії (розладу координації рухів).

Зона шкірного аналізатора, зв'язаного з температурою, больовою і тактильною чутливістю займає задньоцентральну ділянку. Центри чутливості нижчих частин тіла розміщені у верхніх частинах тіла - у нижніх її ділянках.

Найбільшу площу займає кіркове представництво рецепторів кисті рук, голосового аналізатора і обличчя, найменшу - тулуба, стегна і гомілки.

Ядерна зона зорового аналізатора розташована на внутрішній поверхні потиличної ділянки, в зоні шпорної борозни. Ураження цього центру призводить до сліпоти. При порушеннях у сусідніх із шпорною борозною частин кори в ділянці потиличного полюса на медіальній і латеральній поверхнях частки може спостерігатися втрата зорової пам'яті, здатності орієнтації у незнайомій обстановці, порушення функції, пов'язаної із бінокулярним зором (здатності за допомогою зору оцінювати форму предметів, відстань до них тощо).

У корі верхньої скроневої звивини розташована частина слухового аналізатора, а поблизу від бокової борозни - ядерна зона смакового аналізатора. Двостороннє ураження до повної кіркової глухоти.

Нюхова зона розміщена на внутрішній поверхні скроневих ділянок кори. В ділянці середньої і нижньої скроневих звивин розташоване кіркове представництво вестибулярного аналізатора. Ураження цієї ділянки призводить до порушення рівноваги під час стояння і зниження чутливості.

Із сенсорними зонами взаємодіє моторна зона кори великого мозку. Ядерні зони аналізаторів - це ділянки кори, в яких закінчується основна маса провідних шляхів аналізаторів. За межами ядерних зон розташовані розсіяні елементи, куди надходять імпульси від тих же рецепторів, що і в ядро аналізатора.

Центр мови міститься у лівій півкулі. Розрізняють 2 центри мови: руховий (зона Брока), який міститься у нижній частині лобової ділянки і слуховий (зона Верніке), який знаходиться у скроневій ділянці, під заднім кінцем сільвієвої борозни. Центри мови є лише у людини. Мовлення, мислення, почуття і вправні рухи контролюються нейронами, які розміщені в лобовій ділянці головного мозку. Розпізнавання тонів і звуків відбувається в скроневій ділянці. Ця ділянка також бере участь у запам'ятовуванні інформації. Різноманітні сенсорні відчуття, такі як біль, температура усвідомлюються та інтерпретуються в тім'яній ділянці. Потилична ділянка фіксує та інтерпретує зорові образи.

[youtube.player]

І. П. Павлов за допомогою розробленого ним об’єктивного методу дослідження поведінки тварин — умовних рефлексів — відкрив фізіоло­гічні закони діяльності кори великих півкуль і створив вчення про вищу нервову діяльність. Численні експерименти, проведені І. П. Павловим і його учнями за допомогою цього методу, підтвердили думку І. М. Сєченова проте, що вся діяльність організму, в тому числі і психічна, причинно зумовлена, тобто є реакцією організму на подразнення із зовнішнього або внутрішнього середовища. Всю рефлекторну діяльність людини і тварини І. П. Павлов поділив на дві категорії: безумовні і умовні рефлекси.

Безумовні рефлекси — це природжені реакції організму на подразнення з зовнішнього або внутрішнього середовища. Вони неминуче проявляються в усякого здорового організму тварини і людини в певний момент його життя, якщо діє подразник, що їх викликає. Рефлекси чхання, кліпання, кашлю і т. п.— це прості безумовні рефлекси; а такі безумовні рефлекси, як харчовий, оборонний, статевий і т. п.,— це складні рефлекси, що на­зиваються інстинктами.

Безумовні рефлекси є видовими: вони властиві кожній особині даного виду тварин.

Здійснення безумовних рефлексів зв’язане з діяльністю нижчих від­ділів центральної нервової системи — спинного мозку і стовбура головного мозку. Про це свідчить той факт, що при наявності цих відділів безумовні рефлекси зберігаються у тварин і після видалення кори великих півкуль головного мозку. Але в нормальних умовах діяльності здорового організму безумовні рефлекси відбуваються під значним впливом кори великих пів­куль головного мозку.

Безумовні рефлекси постійні.

Навколишнє середовище безперервно змінюється; тварини, і особливо людина, поведінка якої визначається сукупністю суспільних відносин, виявляються все в нових і нових умовах. Тому в житті тварин, і особливо людини, виключно велике значення мають тимчасові зв’язки організму з середовищем — умовні рефлекси.

Умовні рефлекси, на відміну від безумовних, є індивідуальними: в одних організмів даного виду вони можуть бути, а в інших їх може не бути. Це рефлекси набуті. Вони виробляються у тварин чи людини в процесі індивідуального життя і надбудовуються на базі безумовних рефлексів.

Умовні рефлекси є функцією вищого відділу центральної нервової системи — кори великих півкуль головного мозку. Якщо у тварини вида­лити кору великих півкуль головного мозку, то всі умовні рефлекси зник­нуть.

Вироблений умовний рефлекс може бути основою для утворення нового умовного рефлексу — умовного рефлексу другого порядку, а на основі дру­гого може утворитись умовний рефлекс третього порядку і т. д.

В утворенні тимчасових нервових зв’язків, комплексних умовних реф­лексів і рефлексів вищого порядку проявляється синтетична діяльність кори великих півкуль головного мозку. Утворення умовного рефлексу е проявом фізіологічного синтезу.

Механізм утворення умовних рефлексів. Умовний рефлекс утворюється внаслідок встановлення в корі великих півкуль тимчасового зв’язку між двома вогнищами збудження. Коли собака їсть, їжа подразнює смакові рецептори ротової порожнини. Збудження, що виникає в рецепторах, по доцентрових нервах надходить у слиновидільний центр в довгастому мозку. Звідси воно йде по відцентрових нервах до слинної залози і викликає сек­рецію слини. Це безумовний рефлекс. Одночасно з довгастого мозку збу­дження надходить у відповідну ділянку кори півкуль головного мозку, де також виникає вогнище збудження.

Якщо перед собакою засвітити електричну лампочку, то ніякого слино­видільного рефлексу не буде (тут світло лампочки є індиферентним подраз­ником). Але нервові імпульси, що виникли в зорових рецепторах ока, про­водяться в зорову зону кори півкуль головного мозку і там виникає вогнище збудження.

Такий фізіологічний ме­ханізм встановлення тимчасо­вих зв’язків і в людей між різними уявленнями, ідеями, словами, вчинками і т. д.

Таким чином, основна функція кори великих пів­куль головного мозку полягає в замиканні тимчасових зв’яз­ків, завдяки яким вироб­ляються умовні рефлекси. Цим самим кора півкуль є вищим органом індивідуаль­ного пристосування організму до умов середовища.

Не нашли то, что искали? Воспользуйтесь поиском:

[youtube.player]

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.