Цикл кори это глюконеогенез

Глюконеогенез – синтез глюкозы из неуглеводных продуктов. Такими продуктами или метаболитами являются в первую очередь молочная и пи-ровиноградная кислоты, так называемые гликогенные аминокислоты, гли-церол и ряд других соединений. Иными словами, предшественниками глюкозы в глюконеогенезе может быть пируват или любое соединение, превращающееся в процессе катаболизма в пируват или один из промежуточных продуктов цикла трикарбоновых кислот.

У позвоночных наиболее интенсивно глюконеогенез протекает в клетках печени и почек (в корковом веществе).

Большинство стадий глюконеогенеза представляет собой обращение реакции гликолиза. Только 3 реакции гликолиза (гексокиназная, фосфо-фруктокиназная и пируваткиназная) необратимы, поэтому в процесс глю-конеогенеза на 3 этапах используются другие ферменты. Рассмотрим путь синтеза глюкозы из пирувата.

Образование фосфоенолпирувата из пирувата. Синтез фосфоенолпирувата осуществляется в несколько этапов. Первоначально пируват под влиянием пируваткарбоксилазы и при участии СО2 и АТФ карбоксилируется с образованием оксалоацетата:


Затем оксалоацетат в результате декарбоксилирования и фосфорилирования под влиянием фермента фосфоенолпируваткарбоксилазы превращается в фосфоенолпируват. Донором фосфатного остатка в реакции служит гуанозинтрифосфат (ГТФ):


Установлено, что в процессе образования фосфоенолпирувата участвуют ферменты цитозоля и митохондрий.

Первый этап синтеза протекает в митохондриях (рис. 10.6). Пируват-карбоксилаза, которая катализирует эту реакцию, является аллостери-ческим митохондриальным ферментом. В качестве аллостерического активатора данного фермента необходим ацетил-КоА. Мембрана митохондрий непроницаема для образовавшегося оксалоацетата. Последний здесь же, в митохондриях, восстанавливается в малат:


Реакция протекает при участии митохондриальной НАД-зависимой малатдегидрогеназы. В митохондриях отношение НАДН/НАД + относительно велико, в связи с чем внутримитохондриальный оксалоацетат легко восстанавливается в малат, который легко выходит из митохондрии через митохондриальную мембрану. В цитозоле отношение НАДН/НАД + очень мало, и малат вновь окисляется при участии цитоплазматической НАД-зависимой малатдегидрогеназы:


Дальнейшее превращение оксалоацетата в фосфоенолпируват происходит в цитозоле клетки.

Превращение фруктозо-1,6-бисфосфата во фруктозо-6-фосфат. Фосфо-енолпируват, образовавшийся из пирувата, в результате ряда обратимых реакций гликолиза превращается во фруктозо-1,6-бисфосфат. Далее следует фосфофруктокиназная реакция, которая необратима. Глюконеогенез идет в обход этой эндергонической реакции. Превращение фруктозо-1,6-бис-фосфата во фруктозо-6-фосфат катализируется специфической фосфатазой:



Рис. 10.6. Образование фосфоенол-пирувата из пирувата. 1 - пируваткарбоксилаза; 2 - малатде-гидрогеназа (митохондриальная); 3 -малатдегидрогеназа (цитоплазматиче-ская); 4 - фосфоенолпируват-карбокси-киназа.


Образование глюкозы из глюкозо-6-фосфата. В последующей обратимой стадии биосинтеза глюкозы фруктозо-6-фосфат превращается в глюкозо-6-фосфат. Последний может дефосфорилироваться (т.е. реакция идет в обход гексокиназной реакции) под влиянием фермента глюкозо-6-фосфатазы:


Регуляция глюконеогенеза. Важным моментом в регуляции глюконеоге-неза является реакция, катализируемая пируваткарбоксилазой. Роль положительного аллостерического модулятора этого фермента выполняет ацетил-КоА. В отсутствие ацетил-КоА фермент почти полностью лишен активности. Когда в клетке накапливается митохондриальный ацетил-КоА, биосинтез глюкозы из пирувата усиливается. Известно, что ацетил-КоА одновременно является отрицательным модулятором пируватдегидроге-назного комплекса (см. далее). Следовательно, накопление ацетил-КоА замедляет окислительное декарбоксилирование пирувата, что также способствует превращению последнего в глюкозу.

Другой важный момент в регуляции глюконеогенеза – реакция, катализируемая фруктозо-1,6-бисфосфатазой – ферментом, который ингибиру-ется АМФ. Противоположное действие АМФ оказывает на фосфофруктокиназу, т. е. для этого фермента он является аллостерическим активатором. При низкой концентрации АМФ и высоком уровне АТФ происходит стимуляция глюконеогенеза. Напротив, когда величина отношения АТФ/АМФ мала, в клетке наблюдается расщепление глюкозы.

В 1980 г. группой бельгийских исследователей (Г. Херс и др.) в ткани печени был открыт фруктозо-2,6-бисфосфат, который является мощным регулятором активности двух перечисленных ферментов:


Фруктозо-2,6-бисфосфат активирует фосфофруктокиназу и ингибирует фруктозо-1,6-бисфосфатазу. Повышение в клетке уровня фруктозо-2,6-бис-фосфата способствует усилению гликолиза и уменьшению скорости глю-конеогенеза. При снижении концентрации фруктозо-2,6-бисфосфата отмечается обратная картина.

Установлено, что биосинтез фруктозо-2,6-бисфосфата происходит из фруктозо-6-фосфата при участии АТФ, а распадается он на фруктозо-6-фосфат и неорганический фосфат. Биосинтез и распад фруктозо-2,6-бис-фосфата катализируется одним и тем же ферментом, т.е. данный фермент бифункционален, он обладает и фосфокиназной, и фосфатазной активностью:


Показано также, что бифункциональный фермент в свою очередь регулируется путем цАМФ-зависимого фосфорилирования. Фосфорилирова-ние приводит к увеличению фосфатазной активности и снижению фосфо-киназной активности бифункционального фермента. Этот механизм объясняет быстрое воздействие гормонов, в частности глюкагона, на уровень фруктозо-2,6-бисфосфата в клетке (см. главу 16).

Активность бифункционального фермента регулируется также некоторыми метаболитами, среди которых наибольшее значение имеет гли-церол-3-фосфат. Действие глицерол-3-фосфата на фермент по своей направленности аналогично эффекту, который наблюдается при его фосфори-лировании с помощью цАМФ-зависимых протеинкиназ.

В настоящее время фруктозо-2,6-бисфосфат, помимо печени, обнаружен и в других органах и тканях животных, а также у растений и микроорганизмов.

Показано, что глюконеогенез может регулироваться и непрямым путем, т.е. через изменение активности фермента, непосредственно не участвующего в синтезе глюкозы. Так, установлено, что фермент гликолиза пиру-ваткиназа существует в 2 формах – L и М. Форма L (от англ. liver – печень) преобладает в тканях, способных к глюконеогенезу. Эта форма ингиби-руется избытком АТФ и некоторыми аминокислотами, в частности ала-нином. М-форма (от англ. muscle – мышцы) такой регуляции не подвержена. В условиях достаточного обеспечения клетки энергией происходит инги-бирование L-формы пируваткиназы. Как следствие ингибирования замедляется гликолиз и создаются условия, благоприятствующие глюконеоге-незу.

Наконец, интересно отметить, что между гликолизом, интенсивно протекающим в мышечной ткани при ее активной деятельности, и глюко-неогенезом, особенно характерным для печеночной ткани, существует тесная взаимосвязь. При максимальной активности мышц в результате усиления гликолиза образуется избыток молочной кислоты, диффундирующей в кровь, в печени значительная ее часть превращается в глюкозу (глюконеогенез). Такая глюкоза затем может быть использована как энергетический субстрат, необходимый для деятельности мышечной ткани. Взаимосвязь между процессами гликолиза в мышечной ткани и глюконеогенезом в печени может быть представлена в виде схемы:

Некот. ткани, напр. мозг, нуждаются в постоянном поступлении глюкозы. Когда поступ. углеводов в составе пищи недост., сод-е глюкозы в крови некоторое время поддерж. в пределах нормы за счёт расщепления гликогена в печени. Однако запасы гликогена в печени невелики. Они значительно уменьшаются к 6-10 ч голодания и практич. полностью исчерп. после суточ. голодания. В этом случае в печени начинается синтез глюкозы de novo - глюконеогенез - процесс синтеза глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длит. голодания и интенс. физич. нагрузок. Протекает в основном в печени и менее интенс. в корковом в-ве почек, в слиз. об-ке кишеч.

Первич. субстраты глюконеогенеза - лактат, ам-ты и глицерол. Лактат - продукт анаэр. гликолиза. Он обр-ся при любых состояниях организма в эритроцитах и работающих мышцах. Ииспользуется в глюконеогенезе постоянно. Глицерол высвоб. при гидролизе жиров в жир. тк. в период голодания или при длит. физич. нагрузке. Ами-ты обр-ся в рез-те распада мыш. белков и включ. в глюконеогенез при длит. голодании или продолжит. мыш. работе.

Большинство р-ций глюконеогенеза протекает за счёт обратимых р-ций гликолиза и катализируется теми же ферментами. Однако 3 реакции необратимы. На этих стадиях р-ции глюконеогенеза протекают другими путями. Часть реакций глюконеогенеза происходит в митохондриях.

ПВК --> оксалоацетат(пируваткарбоксилаза) Оксалоацетат --> фосфоенолпируват (фосфоенолпируваткарбоксикиназа — ГТФ-зависимый фермент). Далее все р-ции до фруктозо-1,6-фосфата проходят под дейст. Гликолитич. Ферм. Фруктозо-1,6-бисфосфатаза и глюкозо-6-фосфатаза катал. отщепление фосфатной гр. от фруктозо-1,6-бисфосфата и глюкозо-6-фосфата. После чего свободная глюкоза выходит из клетки в кровь.

Лактат, обр-ся в интенс. раб. м-цах или в кл. с преобл. анаэр. спос. катаб. глюкозы, поступает в кровь, а затем в печень. В печени отношение NADH/NAD+ ниже, чем в сокращ. м-це, поэтому ЛДГ р-ция протекает в обратном направлении, т.е. в сторону образования ПВК из лактата. ПВК включ. в глюконеогенез, а образ-я глюкоза поступает в кровь и поглощ. скелет. м-цами - "глюкозо-лактатным циклом", или "циклом Кори", обесп. утилизацию лактата; предотвращает его накопление опасное снижение рН (лактоацидоз). Часть ПВК, обр. из лактата, ок. печенью. Энергия ок. может исп. для синтеза АТФ, необхо.о для р-ций глюконеогенеза.

Из всех аминокислот, поступающих в печень, примерно 30% приходится на долю аланина. Аланин из мышц переносится кровью в печень, где преобразуется в ПВК, который частич. окисляется и частично включ. в глюкозонеогенез. Следовательно, сущ. следующая последовательность событий (глюкозо-аланиновый цикл): глюкоза в мышцах → пируват в мышцах → аланин в мышцах → аланин в печени → глюкоза в печени → глюкоза в мышцах. Весь цикл не приводит к увеличению количества глюкозы в мышцах, но он решает проблемы транспорта аминного азота из мышц в печень и предотвращает лактоацидоз.

Аллостерическая регуляция скорости гликолиза, зависимая от изменения соотношения АТФ/АДФ, направлена на изменение скорости исп. глюкозы непосредственно кл. печени. Глюкоза в кл. печени исп. не только для синтеза гликогена и жиров, но также и как источник энергии для синтеза АТФ. Осн. потребителями АТФ в гепатоцитах явл. пр-сы трансмембранного переноса в-в, синтез белков, гликогена, жиров, глюконеогенез. От скорости утилизации АТФ в этих пр-сах зав. скорость его синтеза. АТФ, АДФ и АМФ, а также НАД и НАДН служат аллостерическими эффекторами некот. гликолитических ферментов и ферментов глюконеогенеза. В частности, АМФ активирует фосфофруктокиназу и ингибирует фруктозо-1,6-бисфосфатазу. АТФ и НАДН ингиб. пируваткиназу, а АДФ активирует пируваткарбоксилазу. Следовательно, при усил. расход. АТФ и снижении его конц-ции с одновременным увелич. конц-ции АМФ, активируется гликолиз и обр-е АТФ, а глюконеогенез при этом замедляется.

Глюкокортикостероиды обесп. пр-сс глюконеогенеза субстратами.

Дата добавления: 2015-04-18 ; просмотров: 8 ; Нарушение авторских прав

Глюконеогенез – синтез глюкозы из неуглеводных продуктов de novo. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Протекает в основном в печени и менее интенс. в корковом в-ве почек, в слиз. об-ке кишеч.Большинство р-ций глюконеогенеза протекает за счёт обратимых р-ций гликолиза и катализируется теми же ферментами. Однако 3 реакции необратимы. На этих стадиях р-ции глюконеогенеза протекают другими путями.


ПВК включ. в глюконеогенез, а образ-я глюкоза поступает в кровь и поглощ. скелет. м-цами - "глюкозо-лактатным циклом", или "циклом Кори", -обесп. утилизацию лактата; предотвращает его накопление- опасное снижение рН (лактоацидоз). Часть ПВК, обр. из лактата, окисляется печенью. Энергия ок. может исп. для синтеза АТФ, необхо. для р-ций глюконеогенеза. Из всех аминокислот, поступающих в печень, примерно 30% приходится на долю аланина. Аланин из мышц переносится кровью в печень, где преобразуется в ПВК, который частич. окисляется и частично включ. в глюкозонеогенез.

99.Глюконеогенез.см.выше и в метаболизме*

100-102. Аэробное окисление глюкозы(см.85).

103-104. Челночные механизмы транспорта.

*малат-аспартатный челнок. Перенос водорода из цитозоля НАДН в митохондрии происходит при участии специальных механизмов, называющихся челночными. Суть этих механизмов сводится к тому, что НАДН в цитозоле восстанавливает некоторое соединение, способное проникать в митохондрию; в митохондрии это соединение окисляется, восстанавливая внутримитохондриальный НАД+, и вновь переходит в цитозоль. Самая активная малат-аспартатная система, действующая в митохондриях печени, почек и сердца. На каждую пару электронов цитозольной НАДН, переданную на кислород по этой системе, образуется 3 молекулы АТФ.

В скелетных мышцах и мозге перенос восстановительных эквивалентов от цитозольной НАДН осуществляет глицеролфосфатная система. При этом восстановительные эквиваленты передаются в цепь переноса электронов через комплекс II, и поэтому синтезируется только 2 молекулы АТФ.

Глицеро-фосфатный челнок:

105. Роль инсулина и глюкагона в регуляции энергетического метаболизма при нормальном питании и при голодании.Инсулин и глюкагон играют главную роль в регуляции метаболизма при смене абсорбтивного и постабсорбтивного периодов и при голодании.Абсорбтивный период: Увеличение отношения инсулин/глюкагон вызывает ускорение использования метаболитов для запасания энергоносителей: происходит синтез гликогена, жиров и белков. Режим запасания включается после приёма пищи и сменяется режимом мобилизации запасов после завершения пищеварения.

Голодание: В отсутствие пищи в крови снижается уровень глюкозы, ам-к и ТАГ. инсулинглюкагоновый индекс снижается, и повышается концентрация контринсулярных гормонов, в первую очередь кортизола. Сущ.2 наиболее встречающиеся формы нарушения переваривания дисахари-дов в кишечнике – дефект лактазы(β-гликози-дазного комплекса) и сахаразы (сахаразо-изомальтазного комплекса непереноси-мостьлактозы и сахарозы. Отсутствие гидролиза соответствующих дисахаридов приводит к осмотическому эффекту и задержке воды в просвете кишечника.

Кроме этого, сахара активно потребляются микрофлорой толстого кишечника и метаболизируют с образованием органических кислот (масляная, молочная) и газов. Из-за этого симптомами лактазной или сахаразной недостаточности являются диарея, срыгивания, метеоризм, вспучивание живота, его спазмы и боли, атопический дерматит.

Сахарный диабет - заболевание, возникающее вследствие абсолютного или относительного дефицита инсулина. При сахарном диабете, как правило, соотношение инсулин/глюкагон снижено. При этом ослабевает стимуляция процессов депонирования гликогена и жиров, и усиливается мобилизация запасов энергоносителей. Печень, мышцы и жировая ткань даже после приёма пищи функционируют в режиме постабсорбтивного состояния.

Организм может синтезировать глюкозу из соединений, способных предварительно превратиться в пируват, т. е. из большинства аминокислот и лактата, поступающего в кровь из работающих мышц. Совокупность таких превращений называют глюконеогенезом. Глюкоза не может быть синтезирована из ацетил-СоА и жирных кислот. Глюконеогенез позволяет как бы сохранить энергию превращений в виде гликогена. Однако помимо этого глюконеогенез в ряде случаев спасает организм от гибели.

Мозг требует непрерывного обеспечения глюкозой. Это означает, что во избежание комы или смерти уровень глюкозы в крови должен поддерживаться в пределах нормы. Между тем запасы гликогена в печени невелики и полностью исчерпываются после суточного голодания.

Люди, однако, остаются живы и при более продолжительном отсутствии пищи. В этом случае поступление глюкозы в кровь обеспечивается печенью. Ни один другой орган (кроме почек, вклад которых невелик) не способен выполнить эту задачу. После суточного голодания печень должна удовлетворить потребность человека в глюкозе (около 100 г в день).

На удовлетворение основных энергетических потребностей организма запаса жиров хватает на недели, но жирные кислоты не проникают через гематоэнцефалический барьер и потому не могут использоваться мозгом. Мобилизация жиров приводит к образованию кетоновых тел, чье присутствие в крови в какой-то мере уменьшает потребность в глюкозе (см. с. 84), однако необходимость ее синтеза при этом не исчезает. Потребность мозга в глюкозе при голодании остается прежней. К тому же мозг лишь один из основных ее потребителей. В глюкозе нуждаются клетки сетчатки, мозгового слоя почек, эритроциты, т. е. все ткани и клетки, жизнедеятельность которых в значительной мере или полностью (эритроциты вообще лишены митохондрий!) поддерживается анаэробным метаболизмом.

Глюконеогенез в печени начинается с пирувата, который служит исходным соединением и при синтезе жирных кислот. Казалось бы, он может связать две ветви метаболизма. Однако превращение пирувата в ацетил-СоА у животных необратимо, поэтому они не могут переработать жирные кислоты в глюкозу.

Механизм синтеза глюкозы из пирувата

Среди реакций гликолиза три термодинамически необратимы (см. рис. 8.7):

1) АТР-зависимое фосфорилирование глюкозы гексокиназой (или глюкокиназой);

2) фосфорилирование фруктозо-6-фосфата фосфофруктокиназой;

3) превращение фосфоенолпирувата в пируват. Глюкоза синтезируется из пирувата с образованием тех же промежуточных соединений, что и при гликолизе, но для того, чтобы обойти необратимые реакции, приходится избирать иные пути.

Первый термодинамический барьер нужно преодолеть в ходе превращения пирувата в фосфоенолпируват. Поскольку спонтанное превращение енольной формы пирувата в кетоформу сильно экзоэргонично (большая отрицательная величина ∆G°′), реакция Фосфоенолпируват —> Пируват необратима. Поэтому у животных превращение пирувата в фосфоенолпируват происходит обходным путем, в две стадии с использованием двух макроэргических фосфатов, делающих это превращение термодинамически выгодным:


Схема этих превращений представлена на рис. 11.1.

Рис. 11.1. Глюконеогенез в печени: образование фосфоенолпирувата из пирувата (ФЕП - фосфоенолпируват). Обратите внимание, что эти реакции образуют холостой цикл, если не блокировать обратное превращение ФЕП в пируват. О том, как это достигается, см. в главе 12


Почему на второй стадии используется GTP , а не АТР, непонятно. Энергетически оба эти вещества совершенно эквивалентны. Заметим, что реакция (1) - синтез оксалоацетата, катализируемый пируваткарбоксилазой, играет важную роль в регуляции цикла лимонной кислоты. Однако это не имеет отношения к глюконеогенезу.

Вторая реакция осуществляется фосфоенолпируват-карбоксикиназой. Такое название фермента объясняется тем, что обратную реакцию можно рассматривать как карбоксилирование фосфоенолпирувата, сопряженное с переносом фосфатной группы.

После образования фосфоенолпирувата все гликолитические реакции обратимы вплоть до реакции образования фруктозо-1,6-дифосфата, превращение которого из фруктозо-6-фосфата в ходе гликолиза необратимо. Это препятствие легко преодолевается, поскольку удаление фосфатной группы путем обычного гидролиза не требует затрат энергии.

Аналогичная реакция гидролиза в процессе глюконеогенеза имеет место при превращении глюкозо-6-фосфата в глюкозу (при гликолизе образование глюкозо-6-фосфата, катализируемое гексокиназой или глюкокиназой, необратимо).

В печени присутствует глюкозо-6-фосфатаза, которая гидролизует глюкозо-6-фосфат, после чего свободная глюкоза выходит из клетки. Совокупность реакций глюконеогенеза представлена на рис. 11.2. О том, как регулируется уровень глюкозы крови, рассказано в главе 12.

Итак, существуют четыре фермента, ответственные за глюконеогенез и не принимающие участия в гликолизе: пируваткарбоксилаза, фосфоенолпируваткарбоксикиназа, фруктозо-1,6-дифосфатаза и глюкозо-6-фосфатаза. Естественно, они сосредоточены преимущественно в печени. У крыс концентрация этих ферментов в печени в 20-50 раз больше, чем в скелетных мышцах.


Откуда печень получает пируват для глюконеогенеза?

Когда при голодании истощается запас гликогена, главным источником пирувата становится гидролитическое расщепление мышечных белков, в ходе которого образуются все 20 аминокислот. Хотя аланин - всего лишь одна из них, более 30% всех аминокислот, поступающих в печень, приходится на него. Аланин - одна из глюкогенных аминокислот; его углеводородный скелет используется печенью для строительства молекулы глюкозы (метаболизм аминокислот будет рассмотрен в главе 15).

Почему при расщеплении мышечных белков образуется так много аланина? В результате метаболизма многих аминокислот и цикла лимонной кислоты накапливается оксалоацетат, который превращается в пируват (см. рис. 11.1). Последний преобразуется в аланин; аминогруппа достается ему от других аминокислот.

Заметим, что при голодании для производства энергии мышцы используют в основном жирные кислоты и кетоновые тела; поэтому они располагают достаточным количеством ацетил-СоА, и для его получения им не нужно окисление пирувата. Как будет показано в главе 12, высокое соотношение концентраций ацетил-СоА/ СоА приводит к инактивации пируватдегидрогеназы. Благодаря этому пируват, образующийся из аминокислот, используется для синтеза аланина. При расщеплении мышечных белков образуются различные аминокислоты, многие из которых превращаются в аланин; он переносится кровью в печень. (Кроме аланина в мышцах синтезируется и доставляется в печень для синтеза глюкозы также и глутамин; принцип его превращения тот же.) В печени аланин преобразуется снова в пируват, а затем - в глюкозу. Схема участия аланина в глюконеогенезе представлена на рис. 11.3.

Рис. 11.2. Глюконеогенез в печени: синтез глюкозы из пирувата. Реакции, отличающиеся от соответствующих гликолитических превращений, выделены цветом


Рис. 11.3. Механизм, посредством которого при голодании мышечные белки обеспечивают печень пируватом для глюконеогенеза. Схема предполагает, что пируват не превращается в ацетил-СоА в ходе пируватдегидрогеназной реакции. Наряду с аланином из мышц поступает другой субстрат глюконеогенеза - глутамин


По мере того как при голодании в крови увеличивается содержание кетоновых тел, мозг более активно начинает использовать их вместо глюкозы для производства энергии. Это снижает (хотя и не устраняет) потребность в глюконеогенезе. Поскольку на производство 1 г глюкозы расходуется 2 г мышечных белков, замедление процесса их расщепления благотворно отражается на выживании голодающего организма.

В главе 15 подробно обсуждается схема глюкозо-аланинового цикла (см. рис. 15.9). На ней показано, как аланин, синтезированный в мышцах и доставленный в печень, перерабатывается там в глюкозу. Однако в рамках этой схемы пируват, необходимый для синтеза аланина, образуется в результате гликолиза. При этом имеет место следующая последовательность событий: глюкоза в печени —> глюкоза в мышцах —> аланин в мышцах —> аланин в печени —> глюкоза в печени.

Понятно, что такой цикл не приводит к увеличению количества глюкозы и не решает проблемы снабжения ею тканей, а является лишь формой транспорта аминного азота из мышц в печень.

Другой источник пирувата для глюконеогенеза важен не столько при голодании, сколько при нормальной жизнедеятельности организма. Речь идет о лактате, образующемся при анаэробном гликолитическом расщеплении глюкозы или гликогена (см. с. 101). Некоторые клетки, в частности мозгового вещества почек и сетчатки, фактически анаэробы, а в зрелых эритроцитах вообще нет митохондрий, и они не способны, следовательно, к окислительному фосфорилированию. При нормальном поступлении пищи главным источником лактата является гликолиз в интенсивно работающих мышцах. В таких условиях митохондрии не успевают реокислять накапливающийся NА D Н. В результате восстановительные эквиваленты переносятся на пируват, который превращается в лактат. Последний переносится кровью в печень, а там перерабатывается снова в пируват, а затем в глюкозу и гликоген. Этот физиологический цикл по имени его первооткрывателя называют циклом Кори (рис. 11.4).

Рис. 11.4. Цикл Кори - физиологический цикл, который протекает в мышцах и печени. В мышцах очень невелико содержание трех ферментов, необходимых для глюконеогенеза, поэтому для переработки в глюкозу накопленный в мышцах лактат должен быть перенесен в печень. Избыток лактата образуется в мышцах при их активном сокращении в процессе анаэробного гликолиза


У цикла Кори есть две важнейшие функции: сберечь лактат для последующего использования и предотвратить так называемый лактат-ацидоз. При поступлении больших количеств молочной кислоты в кровь ее буферная емкость может быть исчерпана, что приведет к опасному снижению pH. Этому препятствует превращение лактата в глюкозу, которое сопровождается поглощением двух протонов (на восстановление 1,3-дифосфоглицерата расходуется 1 протон (Н + ) и 1 молекула NА D Н).

Синтез глюкозы из глицерина

Еще одним источником углеродных соединений для глюконеогенеза служит глицерин, образующийся при гидролизе триглицеридов главным образом в жировой ткани. Он поглощается печенью и превращается там в глюкозу в соответствии со схемой, представленной на рис. 11.5. Первый этап - фосфорилирование глицерина осуществляется глицеринкиназой, которой в жировой ткани гораздо меньше, чем в печени. Все последующие превращения также сосредоточены в печени. Это вполне логично, поскольку в ситуации, когда образование глюкозы становится жизненно необходимым, эту задачу решает печень. Поэтому жировые клетки сами не используют глицерин.

Рис. 11.5. Превращение глицерина, высвобождающегося при гидролизе нейтральных жиров, в глюкозу. Основное количество глицерина образуется в жировых клетках, но поскольку в них нет глицеринкиназы, глюконеогенез из глицерина протекает в печени. Этот процесс обеспечивает образование глюкозы из глицерина при голодании


Синтез глюкозы посредством глиоксилатного цикла

Е. coli прекрасно существует, используя в качестве единственного источника углерода ацетат. В отличие от животных, бактерии способны превращать ацетил-СоА в С4-кислоты, задействованные в цикле лимонной кислоты, и использовать их для синтеза глюкозы и других необходимых компонентов клетки. В прорастающих семенах растений для синтеза глюкозы также используются запасенные триглицериды. Как же это удается бактериям и растениям?

Эти организмы обладают обычным циклом лимонной кислоты, но часть образующихся в нем соединений они могут использовать в других превращениях, не свойственных животным. Так, в цикле лимонной кислоты 2 углеродных атома ацетил-СоА вводятся сначала в молекулу оксалоацетата (С4) с образованием цитрата (С6), а затем 2 углеродных атома выводятся в виде 2 молекул С O 2 (переход от С6- к С4-кислотам) с образованием сукцината. Этой безвозвратной потери удается избежать благодаря так называемому глиоксилатному пути, который позволяет вывести из цикла лимонной кислоты 2 атома углерода не в виде С O 2, а в виде глиоксилата, который образуется непосредственно при расщеплении изоцитрата на сукцинат и глиоксилат:


Глиоксилат (С2) далее реагирует с ацетил-СоА, превращаясь в малат - обычный компонент цикла лимонной кислоты.


Общая схема, иллюстрирующая взаимосвязь всех рассмотренных процессов, представлена на рис. 11.6.

Рис. 11.6. Глиоксилатный цикл, с помощью которого растения и бактерии (у животных он отсутствует) осуществляют синтез углеводов из ацетил-СоА

Специфичные для этого цикла реакции выделены цветом. Штриховой линией отмечены реакции цикла лимонной кислоты, которые не задействованы в глиоксилатном цикле. Таким образом удается сохранить 2 молекулы С O 2, необходимые для превращения цитрата в 2 молекулы оксалоацетата, одна из которых опять используется для синтеза цитрата, а другая превращается в фосфоенолпируват


Их суммарный эффект сводится к тому, что ацетил- СоА плюс оксалоацетат превращаются в малат плюс сукцинат. И малат, и сукцинат могут быть преобразованы в оксалоацетат, одна молекула которого без ущерба для цикла может быть направлена на синтез глюкозы. В растениях эти реакции протекают в мембранах органелл, называемых глиоксисомами.

В заключение можно напомнить, что подавляющая доля углеводов на Земле образуется благодаря фотосинтезу, в ходе которого энергия солнечного света используется для фиксации С O 2 в виде дифосфоглицерата - соединения, знакомого нам по гликолизу. Механизмы этого процесса и дальнейшего превращения дифосфоглицерата в глюкозу будут рассмотрены в главе 14 как составные части фотосинтеза.

Итак, мы познакомились с использованием жиров и глюкозы в качестве источников энергии, а также с механизмами синтеза этих веществ. Следует напомнить, что эти метаболические процессы не существуют изолированно, а образуют интегрированную метаболическую систему, все части которой взаимозависимы и нуждаются в регуляции.

Вопросы к главе 11

1. После суточного голодания запасы гликогена в печени истощаются, но в организме имеются довольно большие запасы жиров. Зачем при голодании протекает процесс глюконеогенеза, когда в организме есть практически безграничные запасы ацетил-СоА (из жирных кислот), которых вполне хватает для производства энергии?

2. Почему фосфоенолпируват, необходимый для протекания глюконеогенеза, не может быть получен путем фосфорилирования пирувата с помощью пируват- киназы?

3. Начиная от фосфоенолпирувата, глюконеогенез в печени осуществляется путем обращения реакций гликолиза. Какие два гликолитических фермента катализируют необратимые реакции? Как существование этих реакций сказывается на механизме глюконеогенеза?

4. Есть ли в мышцах глюкозо-6-фосфатаза? Поясните ответ.

5. Что такое цикл Кори и какова его физиологическая роль?

6. В жировых клетках практически нет глицеринкиназы - фермента, катализирующего превращение глицерина в глицерин-3-фосфат, хотя там образуется глицерин (путем гидролиза триглицеридов). В печени же этот фермент есть. Логично ли это? А если да, то почему?

7. Как бактериям и растениям, в отличие от животных, удается превратить ацетил-СоА в углеводы?

Биологическая библиотека - материалы для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.

Copyright © Инфекционные заболевания

Читайте также:
  1. Вирус кори. Таксономия. Характеристика. Лабора­торная диагностика. Специфическая профилактика.
  2. Скважинные пакеры и якори.